Energy-optimal time-dependent regimes of viscous incompressible fluid flow

Abstract

The hydrodynamic equations of a viscous incompressible fluid are modified for axisymmetric flows in a pipe of time-varying radius. A new exact time-dependent solution of these equations which generalizes the well-known classic steady-state Hagen–Poiseuille solution for flow in a pipe of constant radius (independent of time) is obtained. It is shown that the law of time variation in the pipe radius can be determined from the condition of the minimum work done to pump a given fluid volume through such a pipe during the radius variation cycle period. A generalization of the optimal branching pipeline in which, instead of the Poiseuille law, its modification based on the use of the exact solution corresponding to the time-dependent M-shaped regime is employed is suggested. It is shown that the hydraulic resistance can be reduced over a certain range of the parameters of the time-dependent flow regime as compared with the steady-state pipe flow regime. The conclusion obtained can be used for the development of the hydrodynamic basis for simulating the optimal hydrodynamic blood flow regime.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. D. Landau and E. M. Lifshitz, Theoretical Physics in 10 Volumes. Vol. 6. Fluid Mechanics (2nd Ed.) (Pergamon Press, 1987; Nauka, Moscow, 1986).

    Google Scholar 

  2. 2.

    F. L. Chernous’ko, “Optimal Structure of the Branching Pipeline,” Prikl. Mat. Mekh. 47, No. 2, 376–383 (1977).

    Google Scholar 

  3. 3.

    A. T. Il’ichev and Y. B. Fu, “Stability of Aneurysm Solutions in a Fluid-Filled Elastic Membrane Tube,” Acta Mechanica Sinica 28, No. 4, 1209–1218 (2012).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    S. G. Chefranov, “On Conditions of Negativity of Friction Resistance for Nonstationary Modes of Blood Flow and Possible Mechanism of Affecting of Environmental Factors on Energy Effectiveness of Cardiovascular System Function,” Cardiometry, No. 2, 40–50 (2013).

    Google Scholar 

  5. 5.

    J. R. Womersley, “Oscillatory Flow in Arteries: the Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission,” Phys. Med. Biol. 2, No. 2, 178–187 (1957).

    Article  Google Scholar 

  6. 6.

    G. M. Poedintsev and O. K. Voronova, “Third Regime,” Nauka v Rossii, No. 1, 22–23 (1993); “Method of Determination of the Functional State of the Left Heart and Coupled Large Vessels,” Russian Federation Committee on Patents and Trademarks, Invention Application RU 940319041661B5/0227.08.96(1996).

    Google Scholar 

  7. 7.

    G. M. Poedintsev, A. V. Beregovkin, S. I. Ponomarev, and O. K. Strumskite, “Method of Determination of the Stroke Volume,” Invention Certificate 827025 USSR, Invention Bulletin, No. 17, P. 10 (1981).

    Google Scholar 

  8. 8.

    O. K. Voronova, “Development of Models and Algorithms for the Automatic Estimation of the Transport Function of the Cardiovascular System,” Thesis for the Degree of Candidate of Technology Sciences: 05. 13.09. Voronezh (1995).

    Google Scholar 

  9. 9.

    S. G. Chefranov, M. S. Artamonova, L. A. Bokeriya, O. K. Voronova, A. Yu. Gorodkov, V. A. Zernov, G. I. Kiknadze, L. O. Maksimenkov, F. A. Pogarskii, M. Yu. Rudenko, A. G. Chefranov, and A. S. Chefranov, in: A. I. Grigor’ev (Ed.) Health of the Russia Population: Influence of the Environment under Varying Climate, Section 2. 1.1. (2014).

    Google Scholar 

  10. 10.

    A. S. Chefranov and S. G. Chefranov, “Extrema of the Energy and its Dissipation Rate in Swirled Flow Hydrodynamics,” Dokl. Ross. Akad. Nauk 393, No. 5, 624–628 (2004).

    Google Scholar 

  11. 11.

    S. G. Chefranov, “Generation of Spirality in Uniformly Helical Vortex Flows,” Zh. Eksper. Teor. Fiz. 126, No. 5, 1133–1145 (2004).

    Google Scholar 

  12. 12.

    S. G. Chefranov, “Maximum Volume Fluid Flow Rate and the ‘Golden’ Angle of Swirled Pipe Flow,” Dokl. Ross. Akad. Nauk 426, No. 3, 328–331 (2009).

    MathSciNet  Google Scholar 

  13. 13.

    S. G. Chefranov and G. V. Kovrov, “Mathematical Simulation of the Macro-Structural Scale-Similar Sleep Arrangement and the Integrative Indicator of its Efficiency,” Dokl. Ross. Akad. Nauk 407, No. 5, 706–711 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. G. Chefranov.

Additional information

Original Russian Text © S.G. Chefranov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, No. 2, pp. 36–49.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chefranov, S.G. Energy-optimal time-dependent regimes of viscous incompressible fluid flow. Fluid Dyn 52, 201–214 (2017). https://doi.org/10.1134/S0015462817020041

Download citation

Keywords

  • viscous fluid hydrodynamics
  • hydraulic resistance