Advertisement

Fluid Dynamics

, Volume 52, Issue 2, pp 189–200 | Cite as

Stability of two-layer fluid flows with evaporation at the interface

  • V. B. Bekezhanova
  • O. N. Goncharova
  • E. B. Rezanova
  • I. A. Shefer
Article

Abstract

The problem of stability of two-layer (fluid-gas) flows with account of evaporation at the thermocapillary interface is studied under the condition of a fixed gas flow rate. In the upper gas-vapor layer, the Dufour effect is taken into account. A novel exact solution of the Navier–Stokes equations in the Boussinesq approximation is constructed. The effects of longitudinal temperature gradients, gravity, thicknesses of the gas and fluid layers, and the gas flow rate on the flow structure, the onset of recirculated flows near the interface, the evaporation rate, and the properties of characteristic disturbances are investigated.

Keywords

two-layer flow exact solution thermocapillary interface stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Lyulin and O. Kabov, “Evaporative Convection in a Horizontal Liquid Layer under Shear-Stress Gas Flow,” Int. J. Heat Mass Transfer 70, 599–609 (2014).CrossRefGoogle Scholar
  2. 2.
    O. N. Goncharova, E. V. Rezanova, Y. V. Lyulin, and O. A. Kabov, ”Modeling of Two-Layer Liquid-Gas Flow with Account for Evaporation,” Thermophysics and Aeromechanics 22 (5), 655–661 (2015).Google Scholar
  3. 3.
    A. Prosperetti, “Boundary Conditions on Liquid-Vapor Interface,” Mechanica 14 (1), 34–47 (1979).CrossRefMATHGoogle Scholar
  4. 4.
    Yu. K. Bratukhin and S. O. Makarov, Interfacial Convection [in Russian] (Perm’ State University, Perm’, 1994).MATHGoogle Scholar
  5. 5.
    K. S. Das and C. A. Ward, “Surface Thermal Capacity and Its Effects on Boundary Conditions at Liquid-Liquid Interfaces,” Phys. Rev. E 75, 1–4 (2007).CrossRefGoogle Scholar
  6. 6.
    V. V. Kuznetsov, “Heat andMass Transfer at the Liquid-Vapor Interface,” Fluid Dynamics 46 (5), 754–765 (2011).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    O. N. Goncharova, ”Modeling of Flows under Conditions of Heat- and Mass Transfer at the Interface,” [in Russian] Izv. Altai State University 73 (1/2), 12–18 (2012).Google Scholar
  8. 8.
    A. Oron, S. H. Davis, and S. S. Bankoff, “Long-Scale Evolution of Thin Liquid Films”, Rev. Modern Phys. 69 (3), 931–980 (1997).Google Scholar
  9. 9.
    O. E. Shklyaev and E. Fried, “Stability of Evaporating Thin Liquid Film,” J. Fluid Mech. 584, 157–183 (2007).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    O. N. Goncharova and E. V. Rezanova, ”Construction of a Mathematical Model of Flows in a Thin Liquid Layer on the Basis of Classical Convection and Generalized Conditions on an Interface,” [in Russian] Izv. Altai State University 81 (1/1), 70–74 (2015).Google Scholar
  11. 11.
    O. N. Goncharova, M. Hennenberg, E. V. Rezanova, and O. A. Kabov, “Modeling of the Convective Fluid Flows with Evaporation in the Two-Layer Systems,” Interfacial Phenomena and Heat Transfer 1 (3), 317–338 (2013).CrossRefGoogle Scholar
  12. 12.
    M. I. Shliomis and V. I. Yakushin, “Convection in a Two-Layer Binary System with Evaporation,” [in Russian], in: Proc. Uchenye Zapiski Perm’ State University. Ser. Hydrodynamics 4), 129–140 (1972).Google Scholar
  13. 13.
    O. N. Goncharova and E. V. Rezanova,”Example of an Exact Solution of the Stationary Problem of Two-Layer Flows with Evaporation at the Interface,” Journal of Applied Mechanics and Technical Physics 55 (2), 247–257 (2014).Google Scholar
  14. 14.
    J. P. Burelbach, S. G. Banko, and S. H. Davis, “Nonlinear Stability Evaporation/Condensation Films,” J. Fluid Mech. 195, 463–494 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    J. Klentzman and V. S. Ajaev, “The Effect of Evaporation on Fingering Instability,” Phys. Fluids 21, 122101 (2009).ADSCrossRefMATHGoogle Scholar
  16. 16.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Wiley, New York, 1962).Google Scholar
  17. 17.
    A. A. Kirdyashkin, V. I. Polezhaev, and A. I. Fedyushkin, “Thermal Convection in a Horizontal Layer with Lateral Heat Supply,” [in Russian] Prikl. Mekh. Tekh. Fiz. 6), 122–128 (1983).Google Scholar
  18. 18.
    Y. Lyulin, O. Kabov, C. S. Iorio, et al., “Liquids-Candidates for CIMEX-1 Experiments on ISS,” in: CIMEX Meeting. Bruxelles, 2009, May 15.Google Scholar
  19. 19.
    L. G. Napolitano, “Plane Marangoni-Poiseuille Two Immiscible Fluids,” Acta Astronaut. 7), 461–478 (1980).ADSCrossRefMATHGoogle Scholar
  20. 20.
    S. K. Godunov, “On the Numerical Solution of Boundary Value Problems for Systems of Ordinary Linear Equations,” Uspekhi Matem. Nauk 16 (3(99)), 171–174 (1961).Google Scholar
  21. 21.
    V. B. Bekezhanova, The Stability of Non-Isothermal Fluids in Various Models of Convection (Disser. Doctor Phys- Math. Sci. 01-02-05, Krasnoyarsk, 2015).Google Scholar
  22. 22.
    C.-C. Peng, C. Cerretani, R. J. Brown, and C. J. Radke, “Evaporation-Driven Instability of the Precorneal Tear Film,” Adv. Coll. Interf. Sci. 206, 250–264 (2014).CrossRefGoogle Scholar
  23. 23.
    N. Tiwari Naveen and J. M. Davis, “Linear Stability of a Volatile Liquid Film Flowing over a Locally Heated Surface,” Phys. Fluids 21 (2), 022105 (2009).ADSCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. B. Bekezhanova
    • 1
    • 2
  • O. N. Goncharova
    • 3
    • 4
  • E. B. Rezanova
    • 4
  • I. A. Shefer
    • 2
  1. 1.Institute of Computational ModellingSiberian Branch of Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Mathematics and Fundamental Informatics of Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of ScienceNovosibirskRussia
  4. 4.Altai State UniversityBarnaulRussia

Personalised recommendations