Skip to main content
Log in

Turbulent flow structure and heat transfer in an inclined bubbly flow. Experimental and numerical investigation

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of channel inclination on the variation in the wall shear stress and the heat transfer in a two-phase bubbly flow in a rectangular channel is experimentally and numerically investigated. The wall friction was measured using the electrodiffusion method and the temperature was measured by tiny platinum resistance thermometers. The model is based on the system of RANS equations with account for the back influence of the bubbles on the flow characteristics. Flow turbulence is calculated according to the model of transport of the Reynolds stress tensor components. It is shown that in the gas-liquid flow the angle of the channel inclination to the horizon can have a considerable effect on the friction and the heat transfer. The greatest friction and heat transfer values correspond to the angles of channel inclination ranging from 30 to 50∘. In the inclined two-phase bubbly flow the shear stress enhancement on the wall amounts to 30% and that of the heat transfer to 15%. A friction and heat transfer reduction to 10 and 25%, respectively, is noticed in near-horizontal flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zun, “The Transverse Migration of Bubbles Influenced by Walls in Vertical Bubbly Flow,” Int. J. Multiphase Flow 6, 583 (1980).

    Article  Google Scholar 

  2. D. Barnea, O. Shoham, Y. Taitel, and A.E. Dukler, “Gas-Liquid Flows in Inclined Tubes: Flow Pattern Transition for Upward Flow,” Chem. Eng. Sci. 40, 735 (1985).

    Article  Google Scholar 

  3. O.N. Kashinskii, A.V. Chinak, B.M. Smirnov, and M.S. Uspenskii, “Mass Transfer in Gas-Liquid Flow in an Inclined Plane Channel,” Inzh.-Fiz. Zh. 64, 523 (1993).

    Google Scholar 

  4. K. Sanaullah and N.H. Thomas, “Velocity and Voidage Profiles for Steeply Inclined Bubbly Flows in Segregated-Disperse Regimes,” Experimental and Computational Aspects of Validation of Multiphase Flow CFD Codes 180, 119 (1994).

    Google Scholar 

  5. O.N. Kashinskii, A.V. Chinak, and E.V. Kaipova, “Gas-Liquid Bubbly Flow in an Inclined Rectangular Channel,” Teplofiz. Aeromekh. 10, 71 (2003).

    Google Scholar 

  6. E.V. Kaipova, “Two-Phase Bubble Flow in Inclined and Horizontal Channels,” J. Eng. Thermophys. 12, 297 (2003).

    Google Scholar 

  7. D. Xing, C. Yan, L. Sun, J. Lin, and B. Sun, “Experimental Study of Interfacial Parameter Distributions in Upward Bubbly Flow under Vertical and Inclined Conditions,” Exp. Thermal Fluid Sci. 47, 117 (2013).

    Article  Google Scholar 

  8. K. Sanaullah, M. Arshad, A. Khan, and I.R. Chugtai, “Buoyancy Effect in a Steeply Inclined Water-Air Bubbly Shear Flow in a Rectangular Channel,” Teplofiz. Aeromekh. 22, 481 (2015).

    Google Scholar 

  9. A.T. Van Nimwegen, L.M. Portela, and R.A.W.M. Henkes, “The Effect of Surfactants on Upward Air-Water Pipe Flow at Various Inclinations,” Int. J. Multiphase Flow 78, 132 (2016).

    Article  Google Scholar 

  10. V.E. Nakoryakov, A.P. Burdukov, O.N. Kashinskii, and P.I. Geshev, Elecrtodiffusion Method for Investigating the Local Structure of Turbulent Flows [in Russian], Institute of Thermophysics, Novosibirsk (1986).

    Google Scholar 

  11. D.K. Hollingsworth, L.C. Witte, and M. Fugeroa, “Enhancement of Heat Transfer behind Sliding Bubbles,” ASME J. Heat Transfer, 131, 121005 (2009).

    Article  Google Scholar 

  12. O.N. Kashinskii, V.V. Randin, and A.V. Chinak, “Effect of Channel Orientation on Heat Transfer and Friction in Bubbly Flows,” Teplofiz. Aeromekh. 20, 401 (2013).

    Google Scholar 

  13. O.N. Kashinsky, V.V. Randin, and A.V. Chinak, “Heat Transfer and Shear Stress in a Gas-Liquid Flow in an Inclined Flat Channel,” J. Eng. Thermophys. 23, 39 (2014).

    Article  Google Scholar 

  14. S. Piedra, J. Lu, E. Ramos, and G. Tryggvason, “Numerical Study of Flow and Heat Transfer in Inclined Channels,” Int. J. Heat Fluid Flow 56, 43 (2015).

    Article  Google Scholar 

  15. B. Donelly, R. O’Reilly Meeham, K. Nolan, and D.B. Murray, “The Dynamics of Sliding Air Bubbles and the Effects of Surface Heat Transfer,” Int. J. Heat Mass Transfer 91, 532 (2015).

    Article  Google Scholar 

  16. M.A. Pakhomov and V.I. Terekhov, “Modeling of Turbulent Structure of an Upward Polydisperse Gas-Liquid Flow,” Fluid Dynamics 50 (2), 229 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. M.A. Pakhomov and V.I. Terekhov, “Modeling of Turbulent Structure of an Upward Polydisperse Gas-Liquid Flow,” Zh. Tekh. Fiz. 85 (9), 8 (2015).

    MATH  Google Scholar 

  18. M.A. Vorob’ev, O.N. Kashinskii, P.D. Lobanov, and A.V. Chinak, “Formation of the Finely Dispersed Gas Phase in Upward and Downward Fluid Flows,” Fluid Dynamics 47 (4), 494 (2012).

    Article  ADS  MATH  Google Scholar 

  19. L.I. Zaichik, A.P. Skibin, and S.L. Solov’ev, “Modeling the Bubble Distribution in a Turbulent Liquid on the Basis of a Diffusion-Inertia Model,” Teplofiz. Vys. Temp. 42, 111 (2004).

    Google Scholar 

  20. V.M. Alipchenkov and L.I. Zaichik, “Modeling of the Motion of Light-Weight Particles and Bubbles in Turbulent Flows,” Fluid Dynamics 45 (4), 574 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. R. Manceau and K. Hanjalic, “Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,” Phys. Fluids 14, 744 (2002).

    Article  ADS  MATH  Google Scholar 

  22. M. Lopez de Bertodano, S.J. Lee, R.T. Lahey Jr., and D.A. Drew, “The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model,” J. Fluid Eng. 112, 107 (1990).

    Article  Google Scholar 

  23. R.V. Mukin, “Modeling of Bubble Coalescence and Break-up in Turbulent Bubbly Flow,” Int. J. Multiphase Flow 62, 52 (2014).

    Article  MathSciNet  Google Scholar 

  24. L.I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows,” Phys. Fluids 11, 1521 (1999).

    Article  ADS  MATH  Google Scholar 

  25. E. Loth, “Quasi-Steady Shape and Drag of Deformable Bubbles and Drops,” Int. J. Multiphase Flow 34, 523 (2008).

    Article  Google Scholar 

  26. G.B. Wallis, “The Thermal Speed of Single Drops in an Infinite Medium,” Int. J. Multiphase Flow 1, 491 (1974).

    Article  Google Scholar 

  27. O.N. Kashinskii, R.S. Gorelik, and V.V. Randin, “Phase Velocities in a Gas-Liquid Bubbly Flow,” Inzh.-Fiz. Zh. 57, 12 (1989).

    Google Scholar 

  28. S.P. Antal, R.T. Lahey, and J.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 17, 635 (1991).

    Article  MATH  Google Scholar 

  29. F. Lehr and D. Mewes, “A Transport Equation for the Interfacial Area Density Applied to Bubble Columns,” Chem. Eng. Sci. 56, 1159 (2001).

    Article  Google Scholar 

  30. V.T. Nguyen, C.H. Song, B.U. Bae, and D.J. Euh, “Modeling of Bubble Coalescence and Break-up Considering Turbulent Suppression Phenomena in Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 54, 31 (2013).

    Article  Google Scholar 

  31. W. Yao and C. Morel, “Volumetric Interfacial Area Prediction in Upward Bubbly Two-Phase Flow,” Int. J. Heat Mass Transfer 47, 307 (2004).

    Article  MATH  Google Scholar 

  32. E. Krepper, D. Lucas, T. Frank, H.M. Prasser, and P.J. Zwart, “The InhomogeneousMUSIG Model for the Simulation of Polydisperse Flows,” Nucl. Eng. Des. 238, 1690 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kashinskii.

Additional information

Original Russian Text © A.E. Gorelikova, O.N. Kashinskii, M.A. Pakhomov, V.V. Randin, V.I. Terekhov, A.V. Chinak, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, Vol. 52, No. 1, pp. 117–129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelikova, A.E., Kashinskii, O.N., Pakhomov, M.A. et al. Turbulent flow structure and heat transfer in an inclined bubbly flow. Experimental and numerical investigation. Fluid Dyn 52, 115–127 (2017). https://doi.org/10.1134/S0015462817010112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817010112

Keywords

Navigation