Skip to main content
Log in

Oscillations of a water droplet separated from the connection

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The calculation method which makes it possible to predict the behavior of large- and small-scale capillary deformations on the water droplet surface after separation is presented. The calculation scheme is based on the Rayleigh solution for the oscillations of an ideal incompressible fluid droplet and makes it possible to obtain the results which differ from the experimental data by no more than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Badie and D. F. de Lange, “Mechanism of Drop Constriction in a Drop-on-Demand Inkjet System,” Proc. Math. Phys. Eng. Sci. 453, 2573 (1997).

    Article  MATH  Google Scholar 

  2. T. W. Shield, D. B. Bogy, and F. E. Talke, “A Numerical Comparison of One- Dimensional Fluid Jet Models to Drop-on-Demand Printing,” J. Comput. Phys. 67, 324 (1986).

    Article  ADS  Google Scholar 

  3. J. Eggers, “Nonlinear Dynamics and Breakup of Free-Surface Flows,” Rev. Mod. Phys. 69, 865 (1997).

    Article  ADS  MATH  Google Scholar 

  4. J. P. Kizito, R. L. Vander-Wal, and G. Tryggvason, “Effects of Splashing Droplets on Spray Cooling Processes,” in: Proc. IMECE2004. ASME Proc. Heat Transfer. Vol. 1 (2004), p. 149.

    Google Scholar 

  5. J. J. Spillman, “Spray Impaction, Retention and Adhesion—an Introduction to Basic Characteristics,” Pesticide Sci. 15 (2), 97 (1984).

    Article  Google Scholar 

  6. D. L. Chen, L. Li, S. Reyes, D. N. Adamson, and R. F. Ismagilov, “Using Three-Phase Flow of Immiscible Liquids to Prevent Coalescence of Droplets in Microfluidic Channels: Criteria to Identify the Third Liquid and Validation with Protein Crystallization,” Langmuir 23, 2255 (2007).

    Article  Google Scholar 

  7. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable Focus Dielectric Liquid Droplet Lens,” Opt. Express 14, 4101 (2006).

    Article  ADS  Google Scholar 

  8. Lord Rayleigh, “On the Capillary Phenomena of Jets,” Proc. Roy. Soc. London 29, 71 (1879).

    Article  Google Scholar 

  9. Yu. D. Chashechkin and V. E. Prokhorov, “Separation of a Single Water Droplet,” Dokl. Ross. Akad. Nauk 454, 31 (2014).

    Google Scholar 

  10. T. G. Theofanous and G. J. Li, “On the Physics of Aerobreakup,” Phys. Fluids 20, 052103 (2008).

    Article  ADS  Google Scholar 

  11. V. E. Prokhorov and Yu. D. Chashechkin, “Dynamics of Separation of a Single Drop in Air,” Fluid Dynamics 49 (4), 515 (2014).

    Article  Google Scholar 

  12. I. Sobel, “An Isotropic 3×3 Gradient Operator, Machine Vision for Three-Dimensional Scenes,” In: H. Freeman, Acad. Press (1990), p. 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Korshunov.

Additional information

Original Russian Text © A.I. Korshunov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 4, pp. 139–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, A.I. Oscillations of a water droplet separated from the connection. Fluid Dyn 50, 585–589 (2015). https://doi.org/10.1134/S0015462815040134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815040134

Keywords

Navigation