W.W. McKenna, “Interaction between Detonation Waves and Flowfields,” AIAA J. 5, 868 (1967).
Article
ADS
Google Scholar
A.A. Vasil’ev, V.I. Zvyagintsev, and D.G. Nalivaichenko, “Detonation Waves in a Supersonic Flow of a Reacting Mixture,” Fiz. Goreniya Vzryva 42(5), 85 (2006).
Google Scholar
V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Initiation, Propagation, and Stabilization of Detonation Waves in a Supersonic Flow,” in: A.A. Barmin (ed.), Topical Problems of Mechanics. On the 85th Anniversary of Academician G.G. Chernyi [in Russian], Moscow Univ. Press, Moscow (2008), p. 240.
Google Scholar
T.A. Zhuravskaya and V.A. Levin, “Investigation of Certain Techniques for Stabilizing Detonation Waves in a Supersonic Flow,” Fluid Dynamics 47(6), 793 (2012).
Article
ADS
MATH
Google Scholar
V.A. Levin, I.S. Manuilovich, and V.V. Markov, “Excitation and Breakdown of Detonation in Gases,” Inzh.-Fiz. Zh. 83, 1174 (2010).
Google Scholar
Yu.V. Tunik, “Numerical Modeling of Detonation Combustion of Hydrogen-Air Mixtures in a Convergent-Divergent Nozzle,” Fluid Dynamics 45(2), 264 (2010).
Article
ADS
MATH
Google Scholar
A.V. Trotsyuk, A.N. Kudryavtsev, and M.S. Ivanov, “Numerical Investigations of Detonation Waves in Supersonic Steady Flows,” in: G. Roy et al. (eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow, p. 125 (2006).
Google Scholar
H.Y. Fan and F.K. Lu, “Numerical Modelling of Oblique Shock and Detonation Wave Induced in a Wedged Channel,” J. Aerospace Engng. 222, 687 (2008).
Google Scholar
N.A. Popov, “Nonequilibrium Excitation Effect on Ignition of Hydrogen-Oxygen Mixtures,” Teplofiz. Vys. Temp. 45, 296 (2007).
Google Scholar
J. Warnatz, U. Maas, and R.W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation Springer, Berlin (2006).
Google Scholar
A.M. Starik, N.S. Titova, A.S. Sharipov, and V.E. Kozlov, “On the Mechanism of Synthetic Gas Oxidization,” Fiz. Goreniya Vzryva 46(5), 3 (2010).
Google Scholar
R.I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).
Google Scholar
T.A. Zhuravskaya, “Propagation of Detonation Waves in Channels with Obstacles,” Fluid Dynamics 42(6), 987 (2007).
Article
ADS
MATH
Google Scholar
V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Propagation of Cellular Detonation in the Plane Channels with Obstacles,” in: Shock Waves: Proc. Symp. Vol. 1 (2007), p. 347.
Google Scholar
B.D. Taylor, D.A. Kessler, V.N. Gamezo, and E.S. Oran, “Numerical Simulation of Hydrogen Detonations with Detailed Chemical Kinetics,” Proc. Combust. Inst. 34(2), 2009 (2013).
Article
Google Scholar
V.P. Glushko et al. (eds.), Thermodynamic Properties of Individual Substances. Vol. 1 [in Russian], Nauka, Moscow (1978).
Google Scholar
S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov. A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976).
Google Scholar
R.I. Soloukhin, “Fluctuating Gas Combustion behind a Shock Wave in a Supersonic Flow,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 5, 57 (1961).
Google Scholar
R.I. Soloukhin, “Detonation Waves in Gases,” Usp. Fiz. Nauk 80, 525 (1963).
Article
Google Scholar
J. Verreault, A. Higgins, and R. Stove, “Formation of Transverse Waves in Oblique Detonations,” Proc. Combust. Inst. 34(2), 1913 (2013).
Article
Google Scholar
Vl.V. Voevodin, S.A. Zhumatii, S.I. Sobolev, A.S. Antonov, P.A. Bryzgalov, D.A. Nikitenko, K.S. Stefanov, and Vad.V. Voevodin, “Practice of the Lomonosov Supercomputer,” Otkrytye Sistemy No. 7, 36 (2012).
Google Scholar