Advertisement

Fluid Dynamics

, Volume 50, Issue 2, pp 283–293 | Cite as

Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel

  • T. A. ZhuravskayaEmail author
  • V. A. Levin
Article

Abstract

Several kinetic models of hydrogen oxidization are compared for the purpose of selecting the reaction mechanism to describe the chemical interaction in numerically modeling the detonation combustion of a hydrogen-airmixture. Within the framework of the chosen kinetic model the possibility of stabilizing a detonation wave in a stoichiometric hydrogen-airmixture arriving in a plane channel at a supersonic velocity is discussed. For certain inflow Mach numbers a method for determining the shape of the channel, in which a stabilized detonation wave can be formed without energy supply, is proposed. In the case of the M0 = 5.5 combustible mixture flow past a semi-infinite symmetric plane body aligned with the flow the structure of the detached detonation wave stabilized ahead of the obstacle is studied.

Keywords

numerical modeling detailed chemical kinetics combustible gas mixture supersonic flow detonation stabilization plane channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.W. McKenna, “Interaction between Detonation Waves and Flowfields,” AIAA J. 5, 868 (1967).CrossRefADSGoogle Scholar
  2. 2.
    A.A. Vasil’ev, V.I. Zvyagintsev, and D.G. Nalivaichenko, “Detonation Waves in a Supersonic Flow of a Reacting Mixture,” Fiz. Goreniya Vzryva 42(5), 85 (2006).Google Scholar
  3. 3.
    V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Initiation, Propagation, and Stabilization of Detonation Waves in a Supersonic Flow,” in: A.A. Barmin (ed.), Topical Problems of Mechanics. On the 85th Anniversary of Academician G.G. Chernyi [in Russian], Moscow Univ. Press, Moscow (2008), p. 240.Google Scholar
  4. 4.
    T.A. Zhuravskaya and V.A. Levin, “Investigation of Certain Techniques for Stabilizing Detonation Waves in a Supersonic Flow,” Fluid Dynamics 47(6), 793 (2012).CrossRefADSzbMATHGoogle Scholar
  5. 5.
    V.A. Levin, I.S. Manuilovich, and V.V. Markov, “Excitation and Breakdown of Detonation in Gases,” Inzh.-Fiz. Zh. 83, 1174 (2010).Google Scholar
  6. 6.
    Yu.V. Tunik, “Numerical Modeling of Detonation Combustion of Hydrogen-Air Mixtures in a Convergent-Divergent Nozzle,” Fluid Dynamics 45(2), 264 (2010).CrossRefADSzbMATHGoogle Scholar
  7. 7.
    A.V. Trotsyuk, A.N. Kudryavtsev, and M.S. Ivanov, “Numerical Investigations of Detonation Waves in Supersonic Steady Flows,” in: G. Roy et al. (eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow, p. 125 (2006).Google Scholar
  8. 8.
    H.Y. Fan and F.K. Lu, “Numerical Modelling of Oblique Shock and Detonation Wave Induced in a Wedged Channel,” J. Aerospace Engng. 222, 687 (2008).Google Scholar
  9. 9.
    N.A. Popov, “Nonequilibrium Excitation Effect on Ignition of Hydrogen-Oxygen Mixtures,” Teplofiz. Vys. Temp. 45, 296 (2007).Google Scholar
  10. 10.
    J. Warnatz, U. Maas, and R.W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation Springer, Berlin (2006).Google Scholar
  11. 11.
    A.M. Starik, N.S. Titova, A.S. Sharipov, and V.E. Kozlov, “On the Mechanism of Synthetic Gas Oxidization,” Fiz. Goreniya Vzryva 46(5), 3 (2010).Google Scholar
  12. 12.
    R.I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  13. 13.
    T.A. Zhuravskaya, “Propagation of Detonation Waves in Channels with Obstacles,” Fluid Dynamics 42(6), 987 (2007).CrossRefADSzbMATHGoogle Scholar
  14. 14.
    V.A. Levin, V.V. Markov, T.A. Zhuravskaya, and S.F. Osinkin, “Propagation of Cellular Detonation in the Plane Channels with Obstacles,” in: Shock Waves: Proc. Symp. Vol. 1 (2007), p. 347.Google Scholar
  15. 15.
    B.D. Taylor, D.A. Kessler, V.N. Gamezo, and E.S. Oran, “Numerical Simulation of Hydrogen Detonations with Detailed Chemical Kinetics,” Proc. Combust. Inst. 34(2), 2009 (2013).CrossRefGoogle Scholar
  16. 16.
    V.P. Glushko et al. (eds.), Thermodynamic Properties of Individual Substances. Vol. 1 [in Russian], Nauka, Moscow (1978).Google Scholar
  17. 17.
    S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov. A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  18. 18.
    R.I. Soloukhin, “Fluctuating Gas Combustion behind a Shock Wave in a Supersonic Flow,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 5, 57 (1961).Google Scholar
  19. 19.
    R.I. Soloukhin, “Detonation Waves in Gases,” Usp. Fiz. Nauk 80, 525 (1963).CrossRefGoogle Scholar
  20. 20.
    J. Verreault, A. Higgins, and R. Stove, “Formation of Transverse Waves in Oblique Detonations,” Proc. Combust. Inst. 34(2), 1913 (2013).CrossRefGoogle Scholar
  21. 21.
    Vl.V. Voevodin, S.A. Zhumatii, S.I. Sobolev, A.S. Antonov, P.A. Bryzgalov, D.A. Nikitenko, K.S. Stefanov, and Vad.V. Voevodin, “Practice of the Lomonosov Supercomputer,” Otkrytye Sistemy No. 7, 36 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of MechanicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations