Skip to main content
Log in

Modeling of turbulent structure of an upward polydisperse gas-liquid flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Calculations of the structure of an upward polydisperse gas-liquid pipe flow are presented. The model is based on the Eulerian approach with account of the feedback effect of the bubbles on the average parameters and turbulence of the carrier phase. The turbulent kinetic energy of the fluid is calculated using the transport equations for the Reynolds stresses. The bubble dynamics are described with account for the variation of the mean bubble volume due to the coalescence and break-up of the bubbles. The comparison of the results with experimental data shows that the approach developedmakes it possible to describe adequately turbulent gas-liquid flows over a wide range of variation of the gas volume fraction and the initial bubble size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lopez de Bertodano, S.J. Lee, R.T. Lahey, and D.A. Drew, “The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model,” Trans. ASME J. Fluids Eng. 112, 107–113 (1990).

    Article  Google Scholar 

  2. L.I. Zaichik, A.P. Skibin, and S.L. Solov’ev, “Simulation of the Distribution of Bubbles in a Turbulent Liquid Using a Diffusion-Inertia Model,” High Temperature 42(1), 111–117 (2004).

    Article  Google Scholar 

  3. O.N. Kashinsky, P.D. Lobanov, M.A. Pakhomov, et al., “Experimental and Numerical Study of Downward Bubbly Flow in a Pipe,” Int. J. Heat Mass Transfer (49), 3717–3727 (2006).

    Google Scholar 

  4. V.I. Terekhov and M.A. Pakhomov, “Effect of Bubbles on the Flow Structure and Friction in a Downward Turbulent Gas-Liquid Flow,” High-Temperature 46(6), 924–930 (2008).

    Article  Google Scholar 

  5. V.M. Alipchenkov and L.I. Zaichik, “Modeling of the Motion of Light-Weight Particles and Bubbles in Turbulent Flows,” Fluid Dynamics 45(4), 574–590 (2010).

    Article  ADS  MATH  Google Scholar 

  6. R.N. Gafiyatov, D.A. Gubaidullin, and A.A. Nikiforov, “Propagation of Acoustic Waves in Two-Fraction Bubbly Liquids With Account of Phase Transitions in Each Fraction,” Fluid Dynamics 48(3), 366–373 (2013).

    Article  ADS  MATH  Google Scholar 

  7. M.A. Vorob’ev, O.N. Kashinskii, P.D. Lobanov, and A.V. Chinak, “Formation of the Finely Dispersed Gas Phase in Downward and Upward Fluid Flows,” Fluid Dynamics 47(4), 494–500 (2012).

    Article  ADS  MATH  Google Scholar 

  8. P.M. Carrica, D.A. Drew, F. Bonetto, and R.T. Lahey, Jr., “A Polydisperse Model for Bubbly Two-Phase Flow Around a Surface Ship,” Int. J. Multiphase Flow 25(2), 257–305 (1999).

    Article  MATH  Google Scholar 

  9. J. Chahed, V. Roig, and L. Masbernat, “Eulerian-Eulerian Two-Fluid Model for Turbulent Gas-Liquid Bubbly Flows,” Int. J. Multiphase Flow 29, 23–49 (2003).

    Article  MATH  Google Scholar 

  10. M. Politano, P. Carrica, and J. Converti, “A model for Turbulent Polydisperse Two-Phase Flow in Vertical Channel,” Int. J. Multiphase Flow 29(1), 1153–1182 (2003).

    Article  MATH  Google Scholar 

  11. S. Kumar and D. Ramkrishna, “On the Solution of Population Balance Equations by Discretization-I. A Fixed Pivot Technique,” Chem. Eng. Sci. 51, 1311–1332 (1996).

    Article  Google Scholar 

  12. S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu, “On the Numerical Study of Isothermal Vertical Bubbly Flow Using Two Population Balance Approaches,” Chem. Eng. Sci. 62, 4659–4674 (2007).

    Article  Google Scholar 

  13. A.K. Das, P.K. Das, and J.R. Thome, “Transition of Bubbly Flow in Vertical Tubes: New Criteria Through CFD Simulation,” Trans. ASME J. Fluids Eng. 131(9), Paper 091303 (2009).

    Google Scholar 

  14. L. Deju, S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu, “Capturing Coalescence and Break-Up Processes in Vertical Gas-Liquid Flows: Assessment of Population Balance Methods,” Appl. Math. Model. 37, 8557–8577 (2013).

    Article  Google Scholar 

  15. E. Krepper, D. Lucas, T. Frank, et al. “The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows,” Nucl. Eng. Des. 238, 1690–1702 (2008).

    Article  Google Scholar 

  16. L.I. Zaichik, R.V. Mukin, L.S. Mukina, and V.F. Strizhov, “Development of Diffusion-Inertia Model for the Calculation of Turbulent Bubbly Flows. Isothermal Polydisperse Flow in a Vertical Pipe,” High Temperature 50(5), 665–675 (2012).

    Article  Google Scholar 

  17. R.V. Mukin, “Modeling of Bubble Coalescence and Break-Up in Turbulent Bubbly Flow,” Int. J. Multiphase Flow 62(1), 52–66 (2014).

    Article  MathSciNet  Google Scholar 

  18. B. Selma, R. Bannaru, and P. Proulx, “Simulation of Bubbly Flows: Comparison Between Direct Quadrature Method of Moments (DQMOM) and Method of Classes,” Chem. Eng. Sci. 65(6), 1925–1941.

  19. Q. Wu, S. Kim, M. Ishii, and S.G. Beus, “One-Group Interfacial Area Transport in Vertical Bubbly Flow,” Int. J. Heat Mass Transfer 41, 1103–1112 (1998).

    Article  MATH  Google Scholar 

  20. X. Wang and X. Sun, “Three-Dimensional Simulations of Air-Water Bubbly Flows,” Int. J. Multiphase Flow 36(11–12), 882–890 (2010).

    Article  Google Scholar 

  21. V.T. Nguen, C.-H. Song, B.U. Bae, and D.J. Euh, “Modeling of Bubble Coalescence and Break-up Considering Suppression Phenomena in Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 54(1), 32–42 (2013).

    Google Scholar 

  22. F. Lehr and D. Mewes, “A Transport Equation for the Interfacial Area Density Applied to Bubble Columns,” Chem. Eng. Sci. 56, 1159–1166 (2001).

    Article  Google Scholar 

  23. D. Lucas, E. Krepper, and H.-M. Prasser, “Development of Co-Current Air-Water Flow in a Vertical Pipe,” Int. J. Multiphase Flow 31, 1304–1328 (2005).

    Article  MATH  Google Scholar 

  24. D. Lucas, M. Beyer, L. Szalinski, and P. Schuetz, “A New Database on the Evolution of Two-Phase Flows in a Large Vertical Pipe,” Int. J. Therm. Sci. 49, 669–674 (2010).

    Article  Google Scholar 

  25. R. Manceau and K. Hanjalic, “Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,” Phys. Fluids 14(2), 744–754 (2002).

    Article  ADS  Google Scholar 

  26. L.I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows,” Phys. Fluids 11, 1521–1534 (1999).

    Article  ADS  MATH  Google Scholar 

  27. E. Loth, “Quasi-Steady Shape and Drag of Deformable Bubbles and Drops,” Int. J. Multiphase Flow 34(6), 523–546 (2008).

    Article  Google Scholar 

  28. D.A. Drew and R.T. Lahey, Jr., “The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow,” Int. J. Multiphase Flow 13, 113–121 (1987).

    Article  MATH  Google Scholar 

  29. A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa, “Transverse Migration of Single Bubbles in Simple Shear Flows,” Chem. Eng. Sci. 57(11), 1949–1958 (2002).

    Google Scholar 

  30. T. Hibiki and M. Ishii, “Lift Force in Bubbly Flow Systems,” Chem. Eng. Sci. 62, 6457–6474 (2007).

    Article  Google Scholar 

  31. S.P. Antal, R.T. Lahey, and J.F. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 17(5), 635–652 (1991).

    Article  MATH  Google Scholar 

  32. M.J. Prince and H.W. Blanch, “Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns,” AIChE J. 36, 1485–1499 (1990).

    Article  Google Scholar 

  33. W. Yao and C. Morel, “Volumetric Interfacial Area Prediction in Upward Bubbly Two-Phase Flow,” Int. J. Heat Mass Transfer 47, 307–328 (2004).

    Article  MATH  Google Scholar 

  34. M.A. Pakhomov and V.I. Terekhov, “Numerical Investigation of Flow and Heat Transfer in a Gas-Droplet Separated Turbulent Stream Using the Reynolds Stress Transfer Model,” Fluid Dynamics 48(5), 789–799 (2013).

    Article  MATH  Google Scholar 

  35. T. Hibiki, M. Ishii, and Z. Xiao, “Axial Interfacial Area Transport of Vertical Bubbly Flow,” Int. J. Heat Mass Transfer 44, 1869–1888 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 2, pp. 57–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Modeling of turbulent structure of an upward polydisperse gas-liquid flow. Fluid Dyn 50, 229–239 (2015). https://doi.org/10.1134/S0015462815020076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815020076

Keywords

Navigation