Skip to main content
Log in

Dynamics of horizontal viscoelastic fluid filaments

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The tension force of a thinning high-molecular polymer solution filament is measured using the filament itself as a force sensor. The axial filament stresses and the effects of fluid flow from the filament into adjacent drops are estimated. It is shown that these effects are insignificant for polymer solutions in a low-viscosity solvent (water) but substantial for solutions in a high-viscosity fluid (glycerine). A modification of the standard rheological capillary filament method is proposed. This modification makes it possible to exclude any hypotheses concerning the stress distribution pattern within the filament. Periodic transverse oscillations of the filament axis are revealed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Marmottant and E. Villermaux, “Fragmentation of Stretched Liquid Ligaments,” Phys. Fluids 12(8), 2732–2741 (2004).

    Article  ADS  Google Scholar 

  2. A.V. Bazilevsky, S.I. Voronkov, V.M. Entov, and A.N. Rozhkov, “Orientational Effects during the Breakup of Dilute Polymer Solution Jets and Filaments,” Dokl. Akad. Nauk SSSR 257(2), 336–339 (1981).

    Google Scholar 

  3. A.V. Bazilevsky, V.M. Entov, M.M. Lerner, and A.N. Rozhkov, “Breakup of Polymer Solution Filaments,” Vysokomolekulyar. Soedineniya, Ser. A 39(3), 474–482 (1997).

    Google Scholar 

  4. A.V. Bazilevsky, V.M. Entov, and A.N. Rozhkov, “Oldroyd Fluid Bridge Breakup as a Method of Rheological Testing of Polymer Solutions,” Vysokomolekulyar. Soedineniya, Ser. A 43(7), 1161–1172 (2001).

    Google Scholar 

  5. A.N. Rozhkov, “Dynamics of Dilute Polymer Solution Filaments,” Inzh.-Fiz. Zh. 45(1), 72–80 (1983).

    Google Scholar 

  6. M. Stelter, G. Brenn, A.L. Yarin, et al., “Validation and Application of a Novel Elongational Device for Polymer Solutions,” J. Rheol. 44(3), 595–616 (2000).

    Article  ADS  Google Scholar 

  7. A.N. Alexandrou, A.V. Bazilevskii, V.M. Entov, A.N. Rozhkov, and A. Sharaf, “Breakup of a Capillary Bridge of Suspensions,” Fluid Dynamics 45(6), 952–964 (2010).

    Article  ADS  MATH  Google Scholar 

  8. A.V. Bazilevsky, V.M. Entov, and A.N. Rozhkov, “Liquid Filament Microrheometer and Some of Its Applications,” in Proc. Golden Jubilee Meet. Brit. Soc. Rheol., 3rd Eur. Rheol. Conf. 1990, Edinburgh, UK (Elsevier, L. & N.Y., 1990), pp. 41–43.

    Chapter  Google Scholar 

  9. A.V. Bazilevsky, V.M. Entov, and A.N. Rozhkov, “Breakup of a Liquid Bridge as a Method of Rheological Testing of Biological Fluids,” Fluid Dynamics 46(4), 613–622 (2011).

    Article  Google Scholar 

  10. G.H. McKinley and A. Tripathi, “How to Extract the Newtonian Viscosity from Capillary Breakup Measurements in a Filament Rheometer,” J. Rheol. 44(3), 653–670 (2000).

    Article  ADS  Google Scholar 

  11. M.K. Tiwari, A.V. Bazilevsky, A.L. Yarin, and C.M. Megaridis, “Elongational and Shear Rheology of Carbon Nanotube Suspensions,” Rheol. Acta 48(6), 597–609 (2009).

    Article  Google Scholar 

  12. A. Bazilevsky, A. Rozhkov, and A. Stavitsky, “Stresses in the Filaments of Polymer Solutions,” in Progr. and Trends in Rheol. IV. Proc. 4th Eur. Rheology Conf. Sevilla. 1994, Sevilla, Spain (Steinkopff, Darmstadt, 1994) pp. 468–470.

    Google Scholar 

  13. A.V. Bazilevskii and A.N. Rozhkov, “Dynamics and Breakup of Zigzag-Like Jets of Polymeric Liquids,” Fluid Dynamics 41(4), 493–503 (2006).

    Article  ADS  Google Scholar 

  14. A.V. Bazilevsky, Experimental Investigation of the Breakup of Capillary Jets and Filaments of Viscoelastic Fluids, Candidate’s Dissertation in Mathematics and Physics (Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1987) [in Russian].

    Google Scholar 

  15. R. Anshuman, L. Mahadevan, and J.-L. Thiffeault, “Fall and Rise of a Viscoelastic Filament,” J. Fluid Mech. 563, 283–292 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. V.M. Entov, V.I. Kordonskii, I.V. Prokhorov, et al., “Intense Stretching of Polymer Solutions of Moderate Concentrations,” Vysokomolekulyar. Soedineniya, Ser. A 30(12), 2486–2491 (1988).

    Google Scholar 

  17. A.N. Rozhkov, “Dynamics and Breakup of Viscoelastic Liquids (A Review),” Fluid Dynamics 40(6), 835–853 (2005).

    Article  ADS  MATH  Google Scholar 

  18. D.H. Reneker, A.L. Yarin, H. Fong, and S. Koombhongse, “Bending Instability of Electrical Charged Liquid Jets of Polymer Solutions in Electrospinning,” J. Appl. Phys. 87(9), 4531–4547 (2000).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.V. Bazilevskii, 2013, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2013, Vol. 48, No. 1, pp. 111–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazilevskii, A.V. Dynamics of horizontal viscoelastic fluid filaments. Fluid Dyn 48, 97–108 (2013). https://doi.org/10.1134/S0015462813010110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462813010110

Keywords

Navigation