Skip to main content
Log in

Numerical modeling of a two-dimensional vertical turbulent two-phase jet

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of numerically modeling two-dimensional two-phase flow of the “gas-solid particles” type in a vertical turbulent jet are presented for three cases of its configuration, namely, descending, ascending, and without account of gravity. Both flow phases are modeled on the basis of the Navier-Stokes equations averaged within the framework of the Reynolds approximation and closed by an extended k-ɛ turbulence model. The averaged two-phase flow parameters (particle and gas velocities, particle concentration, turbulent kinetic energy, and its dissipation) are described using the model of mutually-penetrating continua. The model developed allows for both the direct effect of turbulence on the motion of disperse-phase particles and the inverse effect of the particles on turbulence leading to either an increase or a decrease in the turbulent kinetic energy of the gas. The model takes account for gravity, viscous drag, and the Saffman lift. The system of equations is solved using a difference method. The calculated results are in good agreement with the corresponding experimental data which confirms the effect of solid particles on the mean and turbulent characteristics of gas jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.N. Abramovich, Theory of Turbulent Jets [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  2. T.-Y. Sun and G.M. Faeth, “Structure of Turbulent Bubbly Jets. I. Method and Centerline Properties,” Int. J. Multiphase Flow 12, 99 (1986).

    Article  Google Scholar 

  3. S. Kumar, D. Nikitopoulos, and E.E. Michaelidis, “Effect of Bubbles on the Turbulence near the Exit of a Liquid Jet,” Experiments Fluids 7, 487 (1989).

    Article  ADS  Google Scholar 

  4. G. Hetsroni and M. Sokolov, “Distribution of Mass, Velocity and Intensity of Turbulence in a Two-Phase Turbulent Jet,” Trans. ASME. J. Appl. Mech. 38, 315 (1971).

    Article  ADS  Google Scholar 

  5. M.K. Laats and F.A. Frishman, “Assumptions Used in Calculating the Two-Phase Jet,” Fluid Dynamics 5(2), 333 (1970).

    Article  ADS  Google Scholar 

  6. F. Prevost, J. Boree, H.J. Nuglish, and G. Charnay, “Measurements of Fluid/Particle Correlated Motion in the Far Field of an Axisymmetric Jet,” Int. J. Multiphase Flow 22, 685 (1996).

    Article  MATH  Google Scholar 

  7. R.A. Gore and C.T. Crowe, “Effect of Particle Size on Modulating Turbulent Intensity,” Int. J. Multiphase Flow 15, 279 (1989).

    Article  Google Scholar 

  8. G.N. Abramovich, “Effect of Solid-Particle or Droplet Admixture on the Structure of a Turbulent Gas Jet,” Int. J. Heat Mass Transfer 14, 1039 (1971).

    Article  Google Scholar 

  9. Z. Yuan and E.E. Michaelidis, “Turbulence Modulation in Particulate Flows. A Theoretical Approach,” Int. J. Multiphase Flow 18, 779 (1992).

    Article  MATH  Google Scholar 

  10. A.A. Shraiber, L.B. Gavin, V.A. Naumov, and V.P. Yatsenko, Turbulent Flows of Gas Suspensions [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  11. F. Frishman, M. Hussainov, A. Kartushinky, and A. Mulgi, “Numerical Simulation of Two-Phase Turbulent Pipe-Jet Flow Loaded by Polydispersed Solid Admixture,” Int. J. Multiphase Flow 23, 765 (1997).

    Article  MATH  Google Scholar 

  12. I.V. Derevich, “The Hydrodynamics and Heat Transfer and Mass Transfer of Particles under Conditions of Turbulent Flow of Gas Suspension in a Pipe and in an Axisymmetric Jet,” J. High Temp. 40, 78 (2002).

    Article  Google Scholar 

  13. J. Garcia and A.A. Crespo, “Turbulent Model for Gas-Particle Jets,” J. Fluids Eng. 122, 505 (2000).

    Article  Google Scholar 

  14. T.G. Almeida and F.A. Jaberi, “Large-Eddy Simulation of a Dispersed Particle-Laden Turbulent Round Jet,” Int. J. Heat Mass Transfer 51, 683 (2008).

    Article  MATH  Google Scholar 

  15. L.I. Zaichik and V.M. Alipchenkov, “Statistical Models for Predicting Particle Dispersion and Preferential Concentration in Turbulent Flows,” Int. J. Heat Fluid Flow 26, 416 (2005).

    Article  Google Scholar 

  16. C.T. Crowe, “On Models for Turbulence Modulation in Fluid-Particle Flows,” Int. J. Multiphase Flow 26, 719 (2000).

    Article  MATH  Google Scholar 

  17. L. Schiller and A. Naumann, “Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,” Z. Verein. Deutsch. Ing. 77, 318 (1933).

    Google Scholar 

  18. J. He and O. Simonini, Non-Equilibrium Prediction of the Particle-Phase Stress Tensor in Vertical Pneumatic Conveying, Ref: HE 44/93.15. Chatou: Laboratoire d’Hydraulique, Electricité de France (1993).

    Google Scholar 

  19. R. Mei, “An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number,” Int. J. Multiphase Flow 18, 145 (1992).

    Article  MATH  Google Scholar 

  20. A.I. Kartushinsky and E.E. Michaelidis, “An Analytical Approach for the Closure Equations of Gas-Solid Flows with Inter-Particle Collision,” Int. J. Multiphase Flow 30, 159 (2004).

    Article  MATH  Google Scholar 

  21. R. Seffal and E.E. Michaelidis, “Similarity Solutions for a Turbulent Round jet,” J. Fluid Eng. 118, 618 (1996).

    Article  Google Scholar 

  22. S.Yu. Krasheninnikov, “Calculation of Axisymmetric Twisted and Nontwisted Turbulent Jets,” Fluid Dynamics 7(3), 426 (1972).

    Article  ADS  Google Scholar 

  23. P.J. Roache, Computational Fluid Dynamics, Hermosa Publ., Albuquerque (1976).

    Google Scholar 

  24. I.Yu. Brailovskaya and L.A. Chudov, “Solution of the Boundary Layer Equations Using a Difference Method,” in: Numerical Methods and Programming. No. 1 [in Russian], Moscow Univ. Press, Moscow (1962), p. 167.

    Google Scholar 

  25. G. Hetsroni, “Particle-Turbulence Interaction,” Int. J. Multiphase Flow 15, 735 (1989).

    Article  Google Scholar 

  26. E.E. Michaelidis, Particles, Bubbles and Drops-Their Motion, Heat and Mass Transfer, World. Sci. Publ., Singapore (2006).

    Book  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.I. Kartushinskii, E.E. Michaelides, Yu.A. Rudi, S.V. Tisler, I.N. Shcheglov, 2012, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2012, Vol. 47, No. 6, pp. 99–108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartushinskii, A.I., Michaelides, E.E., Rudi, Y.A. et al. Numerical modeling of a two-dimensional vertical turbulent two-phase jet. Fluid Dyn 47, 769–777 (2012). https://doi.org/10.1134/S0015462812060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462812060099

Keywords

Navigation