Skip to main content
Log in

Poiseuille flow and thermal creep in a capillary tube on the basis of the kinetic R-model

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Flow of a diatomic rarefied gas in a capillary tube of infinite length and an arbitrary cross-section under a given small pressure gradient (Poiseuille flow) or a small temperature gradient (thermal creep) is studied on the basis of a kinetic model that takes account for the rotational degrees of freedom of molecules (R-model). Numerical investigation is carried out for flows between parallel flat plates and in a circular capillary tube at the gas parameters corresponding to nitrogen. The main calculated quantity is the gas flow rate through a tube cross-section. The results are compared with the corresponding data obtained on the basis of the S-model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.M. Sharipov and V.D. Seleznev, Rarefied Gas Flows in Channels and Microchannels] [in Russian], Ural Division of the Russian Academy of Sciences, Ekaterinburg (2008).

    Google Scholar 

  2. F. Sharipov and V. Seleznev, “Data on Internal Rarefied Gas Flows,” J. Phys. Chem. Ref. Data 27, 657 (1998).

    Article  ADS  Google Scholar 

  3. S.K. Loyalka and T.S. Storvik, “Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. III. Flow of Polyatomic Gases between Parallel Plates,” J. Chem. Phys. 71, 339 (1979).

    Article  ADS  Google Scholar 

  4. S.S. Lo and S.K. Loyalka, “Flow of Rarefied Polyatomic Gas between Parallel Plates,” J. Vacuum Sci. Technol. A 7, 2766 (1989).

    Article  ADS  Google Scholar 

  5. S.K. Loyalka, T.S. Storvik, and S.S. Lo, “Thermal Transpiration and Mechanocaloric Effect. IV. Flow of Polyatomic Gases in a Cylindrical Tube Surface,” J. Chem. Phys. 76, 4157 (1982)

    Article  ADS  Google Scholar 

  6. S.S. Lo, S.K. Loyalka, and T.S. Storvik, “Kinetic Theory of Thermal Transpiration and Mechano-Caloric Effect. V. Flow of Polyatomic Gases in a Cylindrical Tube with Arbitrary Accommodation at the Surface,” J. Chem. Phys. 81, 2439 (1984).

    Article  ADS  Google Scholar 

  7. I.V. Chermyaninov, V.G. Chernyak, and G.A. Fomyagin, “Heat and Mass Transfer Processes in Polyatomic Gases in a Plane Channel at Arbitrary Knudsen Numbers,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 6, 81 (1984).

  8. I.V. Chermyaninov, V.G. Chernyak, and A.N. Kulev, “Heat and Mass Transfer Processes in Polyatomic Gases in a Cylindrical Capillary Tube at Arbitrary Knudsen Numbers,” Inzh.-Fiz. Zh. 47(1), 71 (1984).

    Google Scholar 

  9. V.A. Rykov, “A Model Equation for a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 10(6), 959 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  10. V.A. Rykov and D.A. Shirobokov, “Numerical Method for Solving the Time-Dependent Kinetic Equation,” in: Reports on Applied Mathematics] [in Russian], Russian Academy of Sciences, Computer Center, Moscow (1993).

    Google Scholar 

  11. V.A. Rykov, V.A. Titarev, and E.M. Shakhov, “Shock Wave Structure in a Diatomic Gas Based on a Kinetic Model,” Fluid Dynamics 43(2), 316 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. I.N. Larina and V.A. Rykov, “Kinetic Model of the Boltzmann Equation for a Power-Law Molecular-Interaction Potential,” Zh. Vychisl. Mat. Mat. Fiz. 50, 544 (2010).

    MathSciNet  MATH  Google Scholar 

  13. I.N. Larina and V.A. Rykov, “Boundary Conditions for Gases on a Body Surface,” Fluid Dynamics 21(5), 795 (1986).

    Article  ADS  Google Scholar 

  14. E.M. Shakhov, “Generalization of the Krook Kinetic Relaxation Equation,” Fluid Dynamics 3(5), 95 (1968).

    Article  ADS  Google Scholar 

  15. V.A. Rykov and V.N. Skobelkin, “Macroscopic Description of the Motions of a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 13(1), 144 (1978).

    Article  ADS  MATH  Google Scholar 

  16. I.N. Larina and V.A. Rykov, “Three-Dimensional Rarefied Flow past Conical Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 29, 110 (1989).

    MathSciNet  Google Scholar 

  17. E.M. Shakhov, “Linearized Problem of Two-Dimensional Rarefied Flow in a Long Channel,” Zh. Vychisl. Mat. Mat. Fiz. 39, 1240 (1999).

    MathSciNet  Google Scholar 

  18. E.M. Shakhov, “Rarefied Flow in a Finite-Length Tube,” Zh. Vychisl. Mat. Mat. Fiz. 40, 647 (2000).

    MathSciNet  Google Scholar 

  19. V.A. Titarev and E.M. Shakhov, “Nonisothermal Gas Flow in a Long Channel on the Basis of the Kinetic S-Model,” Zh. Vychisl. Mat. Mat. Fiz. 50, 2246 (2010).

    MathSciNet  MATH  Google Scholar 

  20. C.K. Chu, “Kinetic-Theoretic Description of the Formation of a ShockWave,” Phys. Fluids 8, 12 (1965).

    Article  ADS  Google Scholar 

  21. V.A. Titarev, “Conservative Numerical Methods for Model Kinetic Equations,” J. Computers Fluids 36, 1446 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. V.A. Titarev, “Numerical Method for Calculating Time-Dependent Two-Dimensional Rarefied Flows in Domains of Arbitrary Shape,” Zh. Vychisl. Mat. Mat. Fiz. 49, 1255 (2009).

    MathSciNet  MATH  Google Scholar 

  23. V.A. Titarev and E.M. Shakhov, “Conservative Higher-Order Method for Calculating Rarefied-Gas Poiseuille Flow in a Channel with an Arbitrary Cross-Section,” Zh. Vychisl. Mat. Mat. Fiz. 50, 563 (2010).

    MathSciNet  MATH  Google Scholar 

  24. V.A. Titarev, “Implicit Unstructured-Mesh Method for Calculating Poiseuille Flows of Rarefied Gas,” Comm. Comput. Phys. 8, 427 (2010).

    MathSciNet  Google Scholar 

  25. F. Sharipov, “Onsager-Casimir Reciprocity Relations for Open Gaseous Systems at Arbitrary Rarefaction. II. Application of the Theory for Single Gas,” Physica A 203, 457 (1994).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.A. Titarev, E.M. Shakhov, 2012, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2012, Vol. 47, ^No. 5, pp. 114–125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titarev, V.A., Shakhov, E.M. Poiseuille flow and thermal creep in a capillary tube on the basis of the kinetic R-model. Fluid Dyn 47, 661–672 (2012). https://doi.org/10.1134/S0015462812050146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462812050146

Keywords

Navigation