Skip to main content
Log in

Modeling of the flow structure and heat transfer in a gas-droplet turbulent boundary layer

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A numerical study of dynamics and heat/mass transfer in a gas-droplet turbulent boundary layer on a vertical flat plate is carried out. A large number of factors which affect the heat and mass transfer and the structure of thermal and concentration fields in a turbulent boundary layer is analyzed. It is shown that the increase in droplet concentration results in the intensification of heat transfer, as compared with the single-phase air flow. The comparison of this analysis with experimental data shows a qualitative and quantitative agreement between the calculated and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Osiptsov, “Mathematical Modeling of Dusty-Gas Boundary Layers,” Appl. Mech. Rev. 50(6), 357–370 (1997).

    Article  ADS  Google Scholar 

  2. A.N. Osiptsov, “Structure of the Laminar Boundary Layer of the Disperse Medium on a Flat Plate,” Fluid Dynamics 15(4), 512–517 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. V.A. Naumov, “Calculation of the Laminar Boundary Layer on a Plate with Allowance for the Lifting Forces Acting on a Dispersed Mixture,” Fluid Dynamics 23(6), 943–945 (1988).

    Article  ADS  Google Scholar 

  4. E.S. Asmolov, “Motion of a Suspension in the Laminar Boundary Layer on a Flat Plate,” Fluid Dynamics 27(1), 49–54 (1992).

    Article  ADS  MATH  Google Scholar 

  5. Yu.M. Tsirkunov, “Modeling of Admixture Motions in the Problems of Two-Phase Aerodynamics. The Effects of Boundary Layer,” Modeling in Mechanics 7(2), 151–193 (1993).

    Google Scholar 

  6. M. Hussainov, A. Kartushinsky, A. Mulgi, A. Rudi, and S. Tisler, “Experimental and Theoretical Study of the Distribution of Mass Concentration of Solid Particles in the Two-Phase Laminar Boundary Layer on a Flat Plate,” Int. J. Multiphase Flow 21(6), 1141–1161 (1995).

    Article  MATH  Google Scholar 

  7. A.N. Osiptsov and E.G. Shapiro, “Heat Transfer in the Boundary Layer of a ‘Gas-Evaporating Droplets’ Two-Phase Mixture,” Int. J. Heat Mass Transfer 36(1), 71–78 (1993).

    Article  MATH  Google Scholar 

  8. A.I. Kartushinskii, I.A. Krupenskii, S.V. Tisler, M.T. Khusainov, and I.N. Shcheglov, “Deposition of Solid Particles in a Laminar Boundary Layer on a Flat Plate,” High Temp. 47(6), 927–936 (2009).

    Google Scholar 

  9. M.S. Bhatti and C.W. Savery, “Augmentation of Heat Transfer in Laminar External Gas Boundary Layer by Vaporization of Suspended Droplets,” Trans. ASME J. Heat Transfer 97(2), 179–184 (1975).

    Article  Google Scholar 

  10. K. Hishida, M. Maeda, and S. Ikai, “Heat Transfer from a Flat Plate in Two-Component Mist Flow,” Trans. ASME J. Heat Transfer 102(2), 513–518 (1980).

    Article  Google Scholar 

  11. V.I. Terekhov and M.A. Pakhomov, “Numerical Study of Heat Transfer in a Laminar Mist Flow Over an Isothermal Flat Plate,” Int. J. Heat Mass Transfer 45(10), 2077–2085 (2002).

    Article  MATH  Google Scholar 

  12. M. Trela, J. Zembik, and B. Durkewicz, “Droplet Deposition on a Flat Plate from an Air/Water Turbulent Mist Flow,” Int. J. Multiphase Flow 8(3), 227–238 (1982).

    Article  Google Scholar 

  13. C.B. Rogers and J.K. Eaton, “The Behavior of Small Particles in a Vertical Turbulent Boundary Layer in Air,” Int. J. Multiphase Flow 16(5), 819–834 (1990).

    Article  MATH  Google Scholar 

  14. C.B. Rogers and J.K. Eaton, “The Effect of Small Particles on Fluid Turbulence in a Flat Plate, TurbulentBoundary Layer in Air,” Phys. Fluids A 3(5) Pt. 1, 928–937 (1991).

    Article  ADS  Google Scholar 

  15. A.Yu. Varaksin, D.S. Mikhatulin, Yu.V. Polezhaev, and A.F. Polyakov, “Measurements of the Velocity Fields of Gas and Solid Particles in the Boundary Layer Flow of a Heterogeneous Turbulent Flow,” High Temp. 33(6), 915–921 (1995).

    Google Scholar 

  16. D. Kaftori, G. Hestroni, and S. Banerjee, “Particle Behavior in the Turbulent Boundary Layer II: Velocity and Distribution Profiles,” Phys. Fluids A 7(5), 1107–1121 (1995).

    Article  ADS  Google Scholar 

  17. A. Taniere, B. Oesterle, and J.C. Monnier, “On the Behaviour of Solid Particles in a Horizontal Boundary Layer with Turbulence and Saltation Effects,” Exp. Fluids 23(6), 463–471 (1997).

    Article  Google Scholar 

  18. J. Wang and E.K. Levy, “Particle Behavior in the Turbulent Boundary Layer of a Dilute Gas-Particle Flow Past a Flat Plate,” Int. J. Exp. Thermal Fluid Sci. 30(5), 473–483 (2006).

    Article  Google Scholar 

  19. I.V. Derevich and L.I. Zaichik, “Particle Deposition from a Turbulent Flow,” Fluid Dynamics 23(5), 722–729 (1988).

    Article  ADS  MATH  Google Scholar 

  20. V.I. Terekhov and M.A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Droplet Flows [in Russian] (Novosibirsk State. Technical. Univ., Novosibirsk, 2008).

    Google Scholar 

  21. E.P. Volkov, L.I. Zaichik, and V.A. Pershukov, Modeling of the Combustion of Solid Fuels [in Russian] (Nauka, Moscow, 1994).

    Google Scholar 

  22. C.B. Hwang and C.A. Lin, “Improved Low-Reynolds-Number k-ɛ-Model Based on Direct Simulation Data,” AIAA J. 36(1), 38–43 (1998).

    Article  ADS  MATH  Google Scholar 

  23. I.V. Derevich, “Hydrodynamics and Heat and Mass Transfer of Particles in Turbulent Gas-Particle Flow in a Pipe and an Axisymmetric Jet,” High Temp. 40(1), 99–86 (2002).

    Article  Google Scholar 

  24. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2012, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2012, Vol. 47, No. 2, pp. 35–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhomov, M.A., Terekhov, V.I. Modeling of the flow structure and heat transfer in a gas-droplet turbulent boundary layer. Fluid Dyn 47, 168–177 (2012). https://doi.org/10.1134/S0015462812020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462812020044

Keywords

Navigation