Skip to main content
Log in

Two-dimensional interaction between an incident shock and a turbulent boundary layer in the presence of an entropy layer

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Delery, “Shock Phenomena in High Speed Aerodynamics: Still a Source of Major Concern,” Aeronaut. J. 103, 19 (1999).

    Google Scholar 

  2. D.S. Dolling, “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?” AIAA J. 39, 1517 (2001).

    Article  ADS  Google Scholar 

  3. D. Knight, H. Yan, A.G. Panaras, and A. Zheltovodov, “Advances in CFD Prediction of Shock Wave Turbulent Boundary Layer Interaction, Progr. Aerospace Sci. 39(2–3), 121 (2003).

    Article  ADS  Google Scholar 

  4. A.A. Zheltovodov, “Advances and Problems inModeling of ShockWave Turbulent Boundary Layer Interactions,” in: 12th Int. Conf. Methods of Aerophys. Research, Novosibirsk, 2004. Pt. 2, Novosibirsk (2004), p. 225.

  5. V.Ya. Neiland, V.V. Bogolepov, G.N. Dudin, and I.I. Lipatov, Asymptotic Theory of Supersonic ViscousGas Flows, Elsevier, Amsterdam (2007).

    Google Scholar 

  6. A.G. Hammit and S.M. Bogdonoff, “Hypersonic Studies of the Leading Edge Effect on the Flow over a Flat Plate,” Jet Propuls. 26(4), 241 (1956).

    Google Scholar 

  7. G.G. Chernyi, Introduction to Hypersonic Flow Theory, Acad. Press, New York (1966).

    Google Scholar 

  8. H.K. Cheng, J.G. Hall, T.C. Golian, and A. Hertzberg, “Boundary-Layer Displacement and Leading-Edge Bluntness Effects in High-Temperature Hypersonic Flow,” J. Aerospace Sci. 28, 353 (1961).

    MATH  Google Scholar 

  9. V.Ya. Borovoy, I.V. Egorov, A.S. Skuratov, and I.V. Struminskaya, “Laminar Heat Exchange on Sharp and Blunt Plates in a Hypersonic Air Flow,” Fluid Dynamics 40(1), 148 (2005).

    Article  ADS  Google Scholar 

  10. J. Don Gray and R.W. Rhudy, “Effects of Blunting and Cooling on Ramp-Induced Separation of Laminar Flows at Supersonic Speeds,” AIAA Paper No. 716 (1972).

  11. M.S. Holden, “Boundary-Layer Displacement and Leading-Edge Bluntness Effects on Attached and Separated Laminar Boundary Layers in a Compression Corner. Part 2. Experimental Study,” AIAA J. 9, 84 (1971).

    Article  ADS  Google Scholar 

  12. V.Ya. Borovoy, I.V. Egorov, A.S. Skuratov, and I.V. Struminskaya, “High-Entropy Layer Effect on Heat Transfer in the Zone of Incidence of an Oblique Shock on the Surface of a Blunt Plate,” Dokl. Ross. Akad. Nauk 400, 37 (2005).

    Google Scholar 

  13. V.Ya. Borovoy, I.V. Egorov, A.S. Skuratov, and I.V. Struminskaya, “Interaction between an Inclined Shock and Boundary and High-Entropy Layers on a Flat Plate,” Fluid Dynamics 40(6), 911 (2005).

    Article  ADS  Google Scholar 

  14. V.Ya. Borovoy, A.S. Skuratov, and I.V. Struminskaya, “On the Existence of a Threshold Value of the Plate Bluntness in the Interference of an Oblique shock with Boundary and Entropy Layers,” Fluid Dynamics 43(3), 369 (2008).

    Article  ADS  Google Scholar 

  15. T. Neuenhahn, “Investigation of the Shock Wave/Boundary Layer Interaction of Scramjet Intake Flows,” Ph. D. Thesis. Aachen Shaker Verlag (2010).

  16. E.R. Van Driest and C.B. Blumer, “Boundary-Layer Transition at Supersonic Speeds — Three-Dimensional Roughness Effects (Spheres),” J. Aerospace Sci. 29, 909 (1962).

    MATH  Google Scholar 

  17. E.L. Morrisette, “Roughness-Induced Transition Criteria for Space Shuttle Type Vehicles,” J. Spacecr. Rockets 13, 118 (1976).

    Article  ADS  Google Scholar 

  18. J.L. Potter and J.D. Whitfield, “Effects of Slight Nose Bluntness and Roughness on Boundary-Layer Transition in Supersonic Flows,” J. Fluid Mech. 12, 501 (1962).

    Article  ADS  MATH  Google Scholar 

  19. T.J. Coakley and P.G. Huang, “Turbulence Modeling for High Speed Flows,” AIAA Paper No. 0436 (1993).

  20. S.K. Godunov, “Difference Method for Numerically Calculating Discontinuous Solutions of Fluid Dynamics Equations,” Matem. Sb. 47, 271 (1959).

    MathSciNet  Google Scholar 

  21. S.K. Godunov, A.V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G.P. Prokopov, Numerical Solution of Multi-Dimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  22. P.L. Roe, “Approximate Riemann Solvers, Rarameter Vectors, and Difference Schemes,” J. Comput. Phys. 43, 357 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. V.P. Kolgan, “Applying the Principle of Minimum Derivative Values to the Construction of Finite-Difference Schemes for Calculating Discontinuous Solutions of Gasdynamics,” Uch. Zap. TsAGI 3(6), 68 (1972).

    Google Scholar 

  24. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49, 357 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M.Ya. Ivanov, V.G. Krupa, and R.Z. Nigmatulin, “Implicit, Higher-Order Godunov Scheme for Integrating Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 29, 888 (1989).

    Google Scholar 

  26. I.V. Egorov and O.L. Zaitsev, “An Approach to the Numerical Solution of the Two-Dimensional Navier-Stokes Equations Using the Shock Fitting Method,” Zh. Vychisl. Mat. Mat. Fiz. 31, 286 (1991).

    MathSciNet  MATH  Google Scholar 

  27. I.Yu. Babaev, V.A. Bashkin, and I.V. Egorov, “Numerical Solution of the Navier-Stokes EquationsUsing Iteration, Variation-Type Methods,” Zh. Vychisl. Mat. Mat. Fiz. 34, 1693 (1994).

    MathSciNet  Google Scholar 

  28. T.A. Driskoll and S.A. Vavasis, “Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation,” SIAM J. Sci. Comput. 19, 1783 (1998).

    Article  MathSciNet  Google Scholar 

  29. G.N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  30. V.A. Bashkin, “Calculation of Friction and Heat Transfer Coefficients for a Plate, a Cone, and a Blunt Body in the Vicinity of the Stagnation Point in a Laminar Boundary Layer Flow without Regard for Dissociation,” Tr. TsAGI No. 937, 12 (1964).

  31. V.S. Avduevskii and V.K. Koshkina (eds.), Fundamentals of Heat Transfer in Aircraft and Rocket and Space Industry [in Russian], Mashinostroenie, Moscow (1992).

    Google Scholar 

  32. S.P. Schneider, “Hypersonic Laminar-Turbulent Transition on Circular Cones and Scramjet Forebodies,” Progr. Aerospace Sci. 40, 1 (2004).

    Article  ADS  Google Scholar 

  33. E. Schulein, “Skin-Friction and Heat Flux Measurements in Shock/Boundary Layer Interaction Flows,” AIAA J. 44, 1732 (2006).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.Ya. Borovoi, I.V. Egorov, A.Yu. Noev, A.S. Skuratov, I.V. Struminskaya, 2011, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2011, Vol. 46, No. 6, pp. 88–109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovoi, V.Y., Egorov, I.V., Noev, A.Y. et al. Two-dimensional interaction between an incident shock and a turbulent boundary layer in the presence of an entropy layer. Fluid Dyn 46, 917–934 (2011). https://doi.org/10.1134/S0015462811060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462811060093

Keywords

Navigation