Skip to main content
Log in

Drift of an inclined plate counter oncoming waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The dependence of the velocity of the motion of a tow with an inclined plate mounted in a wave water channel on the wave parameters, the submergence depth, and the angle of inclination and dimensions of the plate is experimentally investigated. The effect of tow motion counter to the waves is detected and theoretically justified. The free surface profiles for periodic waves above an inclined plate obtained using the elolutionary system of the Boussinesq approximation equations correspond to the measured ones. The pulse generated as a result of wave breakup is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Yu. Yakimov and Yu.L. Yakimov, “Straight-Flow Wave Mover of a Ship,” Vestn. Mosk. Un-ta. Ser. 1. Mat. Mekh. No. 4, 59 (2005).

  2. P.A. Madsen and H.A. Schaffer, “Higher Order Boussinesq-Type Equations for Surface Gravity Waves-Derivation and Analysis,” Phil. Trans. Roy. Soc. London. A 356, 3123 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Peregrine, “Long Waves on a Beach,” J. Fluid Mech. 27, 815 (1967).

    Article  ADS  MATH  Google Scholar 

  4. O. Nwogu, “An Alternative Form of the Boussinesq Equations for Nearshore Wave Propagation,” J. Waterway, Port, Coast. Ocean Engng. 119, 618 (1993).

    Article  Google Scholar 

  5. G.F. Carrier and H.P. Greenspan, “Water Waves of Finite Amplitude on a Sloping Beach,” J. Fluid Mech. 4, 97 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Wei, J.T. Kirby, S.T. Grilli, and R.A. Subramanya, ’Fully Nonlinear Boussinesq Model for Surface Waves. Part 1. Highly Nonlinear Unsteady Waves,” J. Fluid Mech. 294, 71 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M.S. Longuet-Higgins, “TheMean Forces Exerted by Waves on Floating or Submerged Bodies with Applications to Sand Bras and Wave Power Machines,” Proc. Roy. Soc. London. A 352, 463 (1977).

    Article  ADS  Google Scholar 

  8. Y. Tsuji and Yu. Nagata, “Stokes’ Expansion of Internal Deep Water Waves to the Fifth Order,” J. Ocean. Soc. Japan 29, 61 (1973).

    Google Scholar 

  9. M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972).

    Google Scholar 

  10. R.L. Wiegel, “A Presentation of Cnoidal Wave Theory for Practical Application,” J. Fluid Mech. 7, 273 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. K.E. Afanas’ev and C.V. Stukolov, “Solitary Wave Runup onto an Inclined Shore,” Vestn. Omsk. Un-ta No. 3, 9 (1998).

  12. N.E. Kochin, I.A. Kibel’, and N.V. Roze, Theoretical Hydromechanics. Part 1 [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.V. Prokof’ev, A.K. Takmazyan, E.V. Filatov, 2011, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2011, Vol. 46, No. 6, pp. 43–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokof’ev, V.V., Takmazyan, A.K. & Filatov, E.V. Drift of an inclined plate counter oncoming waves. Fluid Dyn 46, 878–889 (2011). https://doi.org/10.1134/S0015462811060056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462811060056

Keywords

Navigation