Skip to main content
Log in

Behavior of a ferrofluid layer with stable surface rupture subjected to a tangential magnetic field

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The conditions of existence of a stable rupture in a horizontal ferrofluid layer on a liquid base are determined experimentally. The characteristics of ruptures of ferrofluid, kerosene, and water layers are compared to estimate the effect of different physicochemical properties of the liquid pairs used. It is found that switching-on a magnetic field parallel to the ferrofluid layer surface initiates deformation of the rupture and its simultaneous motion along the field. The dependences of the geometric parameters of the rupture on the magnetic field strength and the magnetic susceptibility of ferrofluid are established. The possibility of closing the stable rupture under the action of a magnetic field is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Babskii, N.D. Kopachevskii, A.D. Myshkis, L.A. Slobozhanin, and A.D. Tyuptsov, Cosmos Hydrodynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. D.V. Sivukhin, Course of General Physics. Vol. 1. Mechanics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  3. Yu.Yu. Stoilov, “Liquid Oscillations under Evaporation and Paradoxes of Evaporators,” Uspekhi Fiz. Nauk 170, No. 1, 41–56 (2000).

    Article  Google Scholar 

  4. K.G. Kostarev and A.V. Shmyrov, “Stable Surface Ruptures of a Two-Layer Immiscible Liquid System,” in Convective Flows, No. 2 (PGPU, Perm’, 2005) [in Russian], pp. 73–86.

    Google Scholar 

  5. K.G. Kostarev and A.V. Shmyrov, “Stable Ruptures in Two-Layer Liquid Systems. Influence of Edge Effects,” in Hydrodynamics, No. 16 (PGU, Perm’, 2007) [in Russian], pp. 142–148.

    Google Scholar 

  6. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985; Mir, Moscow, 1989).

    Google Scholar 

  7. A.V. Lebedev, A. Engel, K.I. Morozov, and H. Bauke, “Ferrofluid Drops in Rotating Magnetic Fields,” New J. Phys. 5, 57.1–57.20 (2003).

    Article  Google Scholar 

  8. D.P. Jackson and J.A. Miranda, “Controlling Fingering Instabilities in Rotating Ferrofluids,” Phys. Rev. E. 67, Art. No. 017301, 173011–173014 (2003).

    Google Scholar 

  9. R. Richter and A. Lange, “Surface Instabilities of Ferrofluids,” Lect. Notes Phys., No. 763, 157–247 (2009).

  10. V.M. Starov, A. De Ryck, and M.G. Velarde, “On the Spreading of an Insoluble Surfactant over a Thin Viscous Liquid Layer,” Colloid and Interface Sci. 190, No. 1, 104–113 (1997).

    Article  Google Scholar 

  11. K.S. Lee, N. Ivanova, V.M. Starov, N. Hilal, and V. Dutschk, “Kinetics of Wetting and Spreading by Aqueous Surfactant Solutions,” Adv. Colloid and Interface Sci. 144, No. 1–2, 54–65 (2008).

    Article  Google Scholar 

  12. K.S. Lee and V.M. Starov, “Spreading of Surfactant Solutions over Thin Aqueous Layers at Low Concentrations: Influence of Solubility,” J. Colloid and Interface Sci. 329, No. 2, 361–365 (2009).

    Article  Google Scholar 

  13. J.P. Burelbach, S.G. Bankoff, and S.H. Davis, “Steady Thermocapillary Flows of Thin Liquid Layers. II. Experiment,” Phys. Fluids. A. 2, No. 3, 322–323 (1990).

    Article  ADS  MATH  Google Scholar 

  14. A. Thess and W. Boos, “A Model for Marangoni Drying,” Physics of Fluids 11, No. 12, 3852–3855 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.L. Zuev, “Rupture of a Liquid Layer by a Concentration-Capillary Flow,” Kolloid. Zh. 69, No. 3, 315 (2007).

    MathSciNet  Google Scholar 

  16. M.I. Shliomis, “Magnetic Fluids,” Usp. Fiz. Nauk 112, No. 3. 427–458 (1974).

    Article  Google Scholar 

  17. V.E. Samonov, “Mathematical Simulation of Motion of a This Fluid Layer Subjected to Surface Forces,” Thesis for Degree of Candidate of Physico-Mathematical Sciences (Stavropol’, 1984) [in Russian].

  18. Yu.I. Dikanskii, A.R. Zakinyan, and L.S. Mkrtchyan, “Instability of a Thin Magnetic Fluid Layer in a Perpendicular Magnetic Field,” Zh. Tekhn. Fiz. 80, No. 9, 38–43 (2010).

    Google Scholar 

  19. Yu.K. Bratukhin, A.L. Zuev, K.G. Kostarev, and A.V. Shmyrov, “Stability of a Steady-State Discontinuity of a Fluid Layer on the Surface of an Immiscible Fluid,” Fluid Dynamics 44(3), 340–350 (2009).

    Article  ADS  MATH  Google Scholar 

  20. J. Ishimoto, M. Okubo, S. Kamiyama, and M. Higashitani, “Bubble Behavior in Magnetic Fluid under a Nonuniform Magnetic Field,” JSME. Int. J. Ser. B 38, No. 3, 382–387 (1995).

    Article  ADS  Google Scholar 

  21. K. Ueno, M. Higashitani, and S. Kamiyama, “Study on Single Bubbles Rising in Magnetic Fluid for Small Weber Number,” J. Magnetism and Magnetic Materials 149, No. 1, 104–107 (1995).

    Article  ADS  Google Scholar 

  22. K. Ueno, T. Nishita, and S. Kamiyama, “Numerical Simulation of Deformed Single Bubbles Rising in Magnetic Fluid,” J. Magnetism and Magnetic Materials 201 No. 1, 281–284 (1999).

    Article  ADS  Google Scholar 

  23. Ph. Yecko, W.-K. Lee, R. Scardovelli, and A.D. Trubatch, “Deformation and Magnetophoresis of Bubbles in Magnetic Fluids (Ferrofluids),” in 62nd Ann. Meeting of the APS Division of Fluid Dynamics. N. Y. Am. Phys. Soc. (2009), Abs. HJ.003.

  24. K.A. Bushueva, K.G. Kostarev, and A.V. Lebedev, “Effect of a Longitudinal Magnetic Field on a Stable Rupture of a Horizontal Ferrofluid Layer on a Liquid Base,” in Physicochemical and Applied Problems of Magnetic Dispersive Nanosystems (Stavropol’, 2009) [in Russian], pp. 218–223.

  25. V.G. Bashtovoi, S.G. Pogirnitskaya, and A.G. Reks, “Determination of the Shape of a Free Drop of Magnetic Fluid in a Homogeneous Magnetic Field,” Magnitnaya Gidrodinamika, No. 3, 23–26 (1987).

  26. V. Bashtovoi, S. Pogirnitskaya, and A. Reks, “Dynamics of Deformation of Magnetic Fluid at Drops in a Homogeneous Longitudinal Magnetic Field,” J. Magnetism and Magnetic Materials 201, Nos. 1–3, 300–302 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © K.A. Bushueva, K.G. Kostarev, 2011, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2011, Vol. 46, No. 5, pp. 42–50.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushueva, K.A., Kostarev, K.G. Behavior of a ferrofluid layer with stable surface rupture subjected to a tangential magnetic field. Fluid Dyn 46, 707–714 (2011). https://doi.org/10.1134/S0015462811050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462811050048

Keywords

Navigation