In memory of Aleksei Alekseevich Barmin, the scientific editor of

Fluid Dynamics, the prominent scientist in mechanics, and the remarkable man

## Abstract

The results of mathematical modeling and experimental investigation of flows and heat transfer in supercritical media in the vicinity of the critical thermodynamic point under microgravity and terrestrial conditions are considered. The effects of thermal gravitational convection and thermoacoustics complicated by the adiabatic compression effect, as well as the special features of two- and three-dimensional supercritical structures, are discussed. The experimental results obtained aboard the space station *Mir* are interpreted. The projects of experiments aboard the International Space Station, together with their terrestrial applications, are discussed.

This is a preview of subscription content, access via your institution.

## References

- 1.
V.I. Polezhaev, “Convection and Heat/Mass Transfer Processes under Space Flight Conditions,” Fluid Dynamics

**41**(5), 736 (2006). - 2.
V.I. Polezhaev, “Models and Methods for Modeling Convective and Wave Processes and Heat Transfer in Near-Critical Media,” Fluid Dynamics

**46**(1), 3 (2011). - 3.
V.I. Polezhaev and E.B. Soboleva, “Thermo-Gravitational Convection in a Near-Critical Fluid in a Side-Heated Enclosed Cavity,” Fluid Dynamics

**36**(3), 467 (2001). - 4.
V.I. Polezhaev and E.B. Soboleva, “Rayleigh-Bénard Convection in a Near-Critical Fluid in the Neighborhood of the Stability Threshold,” Fluid Dynamics

**40**(2), 209 (2005). - 5.
V.I. Polezhaev, A.A. Gorbunov, S.A. Nikitin, and E.B. Soboleva, “Hydrostatic Compressibility Phenomena: New Opportunities for Near Critical Research in Microgravity,” in: S.S. Sadhal (ed.),

*Ann. New York Acad. Sci.: Proc. Interdisciplinary Transport Phenomena in the Space Sciences. Vol. 1077*, Blackwill Publ., Boston (2006), p. 304. - 6.
A.A. Gorbunov, S.A. Nikitin, and V.I. Polezhaev, “Conditions of Rayleigh-Bénard Convection Onset and Heat Transfer in a Near-Critical Medium,” Fluid Dynamics

**42**(5), 704 (2007). - 7.
S.A. Nikitin, V.I. Polezhaev and E.B. Soboleva, “Patterns and Heat Transfer in Rayleigh-Bénard Thermal Gravitational Convection in Helium (3He) near the Critical Point,” Fluid Dynamics

**45**(4), 517 (2009). - 8.
A.A. Gorbunov and V.I. Polezhaev, “Perturbation Method and Numerical Modeling of Convection for the Rayleigh Problem in Fluids with Arbitrary Equations of State,” Russian Academy of Sciences, Institute for Problems in Mechanics, Preprint No. 897 [in Russian] (2008).

- 9.
V.I. Polezhaev, “Flow and Heat Transfer in Laminar Natural Convection in a Vertical Layer,” in:

*Heat and Mass Transfer. Vol. 1*[in Russian], Moscow, Energiya (1968), p. 631. - 10.
E.B. Soboleva, “Effects of Strong Compressibility in Natural Convective Flows through Porous Media with a Near-Critical Fluid,” Fluid Dynamics

**43**(2), 217 (2008). - 11.
M.P. Vlasyuk and V.I. Polezhaev, “Natural Convection and Heat Transfer in Permeable Porous Materials,” USSR Academy of Sciences, Keldysh Institute of Applied Mathematics, Preprint No. 77 [in Russian] (1975).

- 12.
V.I. Polezhaev, “Numerical Investigation of Natural Convection in Liquids and Gases,” in:

*Certain Applications of the Grid Method in Gas Dynamics. Issue 4*[in Russian], Moscow Univ. Press, Moscow (1971), p. 86. - 13.
G.M. Makhviladze and S.B. Shcherbak, “Numerical Method for Studying Time-Dependent Three-Dimensional Compressible Flows,” Inzh.-Fiz. Zh.

**38**, 528 (1980). - 14.
D.R. Chenowerth and S. Paolucci, “Natural Convection in an Enclosed Vertical Air Layer with Large Horizontal Temperature Differences,” J. Fluid Mech.

**169**, 173 (1986). - 15.
A.B. Kogan and H. Meyer, “Heat Transfer and Convection Onset in a Compressible Fluid:

^{3}He near the Critical Point,” Phys. Rev. E**63**. 056310 (2001). - 16.
V.I. Polezhaev, “Flow and Heat Transfer with Natural Convection of a Gas in a Closed Region after Loss of Hydrostatic Equilibrium Stability,” Fluid Dynamics

**3**(5), 82 (1968). - 17.
V.I. Polezhaev and M.P. Vlasyuk, “Cell Convection in an Infinitely Long Horizontal Gas Layer Heated from Below,” Dokl. Akad. Nauk SSSR

**195**, 1058 (1970). - 18.
V.N. Popov and G.G. Yan’kov, “Heat Transfer at Laminar Free Convection near a Vertical Plate for Fluids on the Supercritical Range of the Parameters of State,” Teplofiz. Vys. Temp.

**20**, 1110 (1982). - 19.
B.S. Petukhov and A.F. Polyakov, “Ranges of ‘Deteriorated’ Heat Transfer at a Supercritical Pressure of Heat-Transport Medium,” Teplofiz. Vys. Temp.

**12**, 221 (1974). - 20.
V.A. Kurganov, “Heat Transfer in Pipes at Supercritical Pressures of Heat-Transport Medium. Certain Results of Scientific Research,” in:

*Proc. 4th Russian National Conf. on Heat Transfer. Vol. 1*[in Russian], Moscow Energy Inst., Moscow (2006), p. 74. - 21.
M. Assenheimer and V. Steinberg, “Rayleigh-Bénard Convection near the Gas-Liquid Critical Point,” Phys. Rev. Lett.

**70**, 3888 (1993). - 22.
V.I. Polezhaev, A.A. Gorbunov, and E.B. Soboleva, “Unsteady Near Critical Flows in Microgravity Environment,” in:

*Ann. New York Acad. Sci.: Transport Phenomena in Microgravity. Vol. 1027*(2004), p. 286. - 23.
A. Onuki, H. Hao, and R.A. Ferrel, “Fast Adiabatic Equilibration in a Single-Component Fluid near the Liquid-Vapor Critical Point,” Phys. Rev. A

**41**, 2256 (1990). - 24.
B. Zappoli and A. Durand-Daubin, “Heat and Mass Transport in a Near Supercritical Fluid,” Phys. Fluids

**6**, 1929 (1994). - 25.
M. Barmatz, I. Hahn, J.A. Lipa, and R.V. Duncan, “Critical Phenomena in Microgravity: Past, Present, and Future,” Rev. Modern Phys.

**79**, 1 (2007). - 26.
L.G. Loytsianskii,

*Mechanics of Liquids and Gases*, Pergamon Press, Oxford (1966). - 27.
J. Straub, L. Eicher, and A. Houpt, “Dynamic Temperature Propagation in a Pure Fluid near its Critical Point Observed under Microgravity during the German Spacelab Mission D2,” Phys. Rev. E

**51**, 5556 (1995). - 28.
R.A. Wilkinson, G.A. Zimmerli, H. Hao, M.R. Moldover, R.F. Berg, W.L. Johnson, R.A. Ferrel, and R.W. Gammon, “Equilibration near the Liquid-Vapor Critical Point in Microgravity,” Phys. Rev. E

**57**, 436 (1998). - 29.
F. Zhong and H. Meyer, “Density Equilibration near the Liquid-Vapor Critical Point of a Pure Fluid: Single Phase ZT > Tc,” Phys. Rev. E

**51**, 3223 (1995). - 30.
P. Carles and B. Zappoli, “Acoustic Saturation of the Critical Speeding up,” Physica D

**89**, 381 (1996). - 31.
M.K. Ermakov, “Heat and Mass Transfer in Supercritical Fluids on the Basis of the One-Dimensional Navier-Stokes Equations,” Mat. Model.

**9**(12), 31 (1997). - 32.
B. Farouk, E.S. Oran, and T. Fusegi, “Numerical Study of Thermoacoustic Waves in an Enclosure,” Phys. Fluids

**12**, 1052 (2000). - 33.
B. Zappoli, S. Amiroudine, P. Carles, and J. Quazzani, “Thermoacoustic and Buoyancy-Driven Transport in a Square Side-Heated Cavity Filled with a Near-Critical Fluid,” J. Fluid Mech.

**316**, 53 (1996). - 34.
G. Accary, I. Raspo, P. Bontoux, and B. Zappoli, “Reverse Transition to Hydrodynamic Stability through the Schwarzschild Line in a Supercritical Fluid,” Phys. Rev. E

**72**, 035301 (2005). - 35.
P. Carles, “Thermoacoustic Waves near the Liquid-Vapor Critical Point,” Phys. Fluids

**18**, 126102 (2006). - 36.
A. Onuki, “Thermoacoustic Effects in Supercritical Fluids near the Critical Point: Resonance, Piston Effect and Reflection,” Phys. Rev. E

**76**, 061126 (2007). - 37.
A.A. Gorbunov, S.A. Nikitin, and V.I. Polezhaev, “Calculations of Thermoacoustic Convection Using a Multiprocessor Computer,” Uch. Zap. TsAGI

**41**(2), 25 (2010). - 38.
H. Schlichting,

*Boundary Layer Theory*, McGrow-Hill, New York (1968). - 39.
V.I. Polezhaev and E.B. Soboleva, “Unsteady Thermo-Gravitational Convection Effects in a Side-Heated or Cooled Near-Critical Fluid,” Fluid Dynamics

**37**(1), 72 (2002). - 40.
P. Carles, “The Onset of Free Convection near the Liquid-Vapor Critical Point. Part 2. Unsteady Heating,” Physica D

**147**, 36 (2000). - 41.
E.L. Khoury and P. Carles, “Scenario for the Onset of Convection Close to the Critical Point,” Phys. Rev. E

**66**, 066309 (2002). - 42.
H. Meyer, “Onset of the Convection in a Supercritical Fluid,” Phys. Rev. E

**73**, 016311.1 (2006). - 43.
A. Furukawa, H. Meyer, A. Onuki, and A.B. Kogan, “Convection in a Very Compressible Fluid: Comparison of Simulation with Experiments,” Phys. Rev. E

**68**, 056309 (2003). - 44.
A. Furukawa, H. Meyer, and A. Onuki, “Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid,” Phys. Rev. E

**71**, 067301 (2005). - 45.
K. Kemmerle, “High Precision Thermostat: A Set of Experiment Facilities for Caloric Research in Space,” AIAA Paper No. 041 (1989).

- 46.
M. Laherrere and P. Koutsikides, “ALICE, an Instrument for the Analysis of Fluids Close to the Critical Point in Microgravity,” Acta Astronaut.

**29**, 861 (1993). - 47.
A.A. Gorbunov, V.M. Emelyanov, A.I. Ivanov, A.V. Kalmykov, A.K. Lednev, V.I. Polezhaev, and E.B. Soboleva, “Measurement and Calculation Complex for Studying Supercritical Fluid Flows on the Basis of the

*Alice-1*Setup,” in:*Proc. 7th Russian Symp. ‘Weightlessness Mechanics. Results and Prospects of the Fundamental Research of Gravity-Sensitive Systems’. 2000*[in Russian], Russian Academy of Sciences, Institute for Problems in Mechanics (2001), p. 181. - 48.
A.A. Gorbunov, V.M. Emelyanov, and V.I. Polezhaev, “Convective Flows in Near-Critical Fluids in Microgravity: Concepts and Results of Modeling,” [in Russian], Russian Academy of Sciences, Institute for Problems in Mechanics (1998).

- 49.
I.A. Babushkin, A.F. Glukhov, A.V. Zyuzgin, S.M. Kuznetsov, G.F. Putin, V.M. Emelyanov, V.I. Polezhaev, A.I. Ivanov, A.V. Kalmykov, and M.M. Maksimova, “Convective Transducers with Gaseous and Near-Critical Media for Detecting and Measuring Microaccelerations in Actual Weightlessness. Experiments Aboard the

*Mir*Station and Projects on the International Space Station,” in:*CD-ROM Proc. 5th Int. Aerospace Congr. IAC-06. Section 17. Microgravity*(2006), p. 719. - 50.
A.V. Zyuzgin, G.F. Putin, N.G. Ivanova, A.V. Chudinov, A.I. Ivanov, A.V. Kalmykov, V.I. Polezhaev, and V.M. Emelianov, “The Heat Convection of Near Critical Fluid in the Controlled Microacceleration Field under Zero-Gravity Condition,” Adv. Space Res.

**32**, 205 (2003). - 51.
S.V. Avdeev, A.I. Ivanov, A.V. Kalmykov, A.A. Gorbunov, S.A. Nikitin, V.I. Polezhaev, G.F. Putin, and V.V. Sazonov, “Experiments in the Far and Near Critical Fluid Aboard Mir Station with the Use of the ‘Alice-1’ Instrument,” in:

*Proc. Joint 10th Eur. and 6th Rus. Symp. on Phys. Sci. in Microgravity. St. Petersburg, Russia, 1997. Vol. 1*, Moscow (1997), p. 333. - 52.
A.V. Zyuzgin, A.I. Ivanov, V.I. Polezhaev, G.F. Putin, and E.B. Soboleva, “Convective Flows of Near-Critical Fluids in Actual Weightlessness,” Kosm. Issl.

**39**(2), 188 (2001). - 53.
D. Beysens, “Thermal and Mechanical Instabilities in Supercritical Fluids,” in:

*Proc. 2nd Eur. Symp. on Fluids in Space. Naples, 1996*, Naples (1996), p. 15. - 54.
V.V. Sazonov, M.K. Ermakov, and A.I. Ivanov, “Measuring Microaccelerations Aboard the Orbital Station

*Mir*during the Experiments Using the*Alice*Setup,” Kosm. Issl.**36**(2), 156 (1998). - 55.
V.I. Polezhaev and E.B. Soboleva, “Thermo-Gravitational and Vibrational Convection in a Near-Critical Gas in Microgravity,” Fluid Dynamics

**35**(3), 371 (2000). - 56.
V.I. Polezhaev, V.M. Emelianov, A.A. Gorbunov, and E.B. Soboleva, “Near Critical Convection in Ground-Based and Microgravity Environment,” Experimental Thermal and Fluid Sci.

**26**(2–4), 101 (2002). - 57.
D. Lyubimov, T. Lyubimova, A. Vorobev, A. Mojtabi, and B. Zappoli, “Thermal Vibrational Convection in Near-Critical Fluids. Part 1. Non-Uniform Heating,” J. Fluid Mech.

**564**, 159 (2006). - 58.
V.I. Polezhaev, V.M. Emelyanov, A.I. Ivanov, A.V. Kalmykov, D. Beysens, and Y. Garrabos, “Experimental Investigation of the Vibration Effect on Transport Processes in a Near-Critical Fluid in Microgravity,” Kosm. Issl.

**39**(2), 201 (2001). - 59.
Y. Garrabos, D. Beysens, C. Lecoutre, A. Dejoan, V. Polezhaev, and V. Emelianov, “Thermoconvectional Phenomena Induced by Vibrations in Supercritical SF6 under Weightlessness,” Phys. Rev. E

**75**, 056317 (2007). - 60.
V. Emelyanov, A. Gorbunov, V. Polezhaev, A. Ivanov, G. Putin, and A. Zyuzgin, “Preparation for the CRIT Space Experiment on the ISS: An Analysis of MIR Experiments and Ground-Based Studies of Heat Transfer and Phase Transition in Near-Critical Fluid,” J. Japan Soc. Microgravity Appl.

**25**(3), 109 (2008). - 61.
R.V. Siraev, “Axisymmetric Convective Boundary Layer in a Vibrating Fluid,” Fluid Dynamics

**41**(1), 759 (2010). - 62.
D. Beysens, P. Evesque, and Y. Garrabos, “Shake, Rattle and Roll: Using Vibration as Gravity. Europe’s Quiet Revolution in Microgravity Research,” Scientific American (2008), p. 74.

- 63.
V.I. Polezhaev and S.A. Nikitin, “Local Heat Transfer Effects and Temperature Stratification under Free Convection in Enclosures,” in:

*4th Russ. National Conf. on Heat Transfer. Vol. 1*[in Russian] (2006), p. 93. - 64.
V.I. Polezhaev, A.A. Gorbunov, V.M. Emelianov, A.K. Lednev, E.B. Soboleva, I.A. Babushkin, A.F. Glukhov, E.A. Zilberman, G.F. Putin, A.V. Zyuzgin, V.V. Sazonov, V.L. Levtov, V.V. Romanov, and A.I. Ivanov, “Convection and Heat Transfer in Near-Critical Fluid: Study on MIR and Project of the Experiment CRIT on ISS,” AIAA Paper No. 1305 (2003).

- 65.
R.W. Lauver and G. Cambon, “DECLIC Facility: Research Capabilities for Microgravity Fluid Physics and Material Science,” AIAA Paper No. 4931 (2001).

## Additional information

Original Russian Text © V.I. Polezhaev, 2011, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2011, Vol. 46, No. 2, pp. 9–32.

## Rights and permissions

## About this article

### Cite this article

Polezhaev, V.I. Modeling convective and wave processes and heat transfer in near-supercritical media. An overview.
*Fluid Dyn* **46, **175–195 (2011). https://doi.org/10.1134/S0015462811020025

Received:

Published:

Issue Date:

### Keywords

- thermal gravitational convection in near-critical media
- piston effect
- thermoacoustics
- microgravity
- spaceborne experiments