Modeling convective and wave processes and heat transfer in near-supercritical media. An overview

In memory of Aleksei Alekseevich Barmin, the scientific editor of Fluid Dynamics, the prominent scientist in mechanics, and the remarkable man

Abstract

The results of mathematical modeling and experimental investigation of flows and heat transfer in supercritical media in the vicinity of the critical thermodynamic point under microgravity and terrestrial conditions are considered. The effects of thermal gravitational convection and thermoacoustics complicated by the adiabatic compression effect, as well as the special features of two- and three-dimensional supercritical structures, are discussed. The experimental results obtained aboard the space station Mir are interpreted. The projects of experiments aboard the International Space Station, together with their terrestrial applications, are discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V.I. Polezhaev, “Convection and Heat/Mass Transfer Processes under Space Flight Conditions,” Fluid Dynamics 41(5), 736 (2006).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2.

    V.I. Polezhaev, “Models and Methods for Modeling Convective and Wave Processes and Heat Transfer in Near-Critical Media,” Fluid Dynamics 46(1), 3 (2011).

    MathSciNet  ADS  Article  Google Scholar 

  3. 3.

    V.I. Polezhaev and E.B. Soboleva, “Thermo-Gravitational Convection in a Near-Critical Fluid in a Side-Heated Enclosed Cavity,” Fluid Dynamics 36(3), 467 (2001).

    MATH  Article  Google Scholar 

  4. 4.

    V.I. Polezhaev and E.B. Soboleva, “Rayleigh-Bénard Convection in a Near-Critical Fluid in the Neighborhood of the Stability Threshold,” Fluid Dynamics 40(2), 209 (2005).

    ADS  MATH  Article  Google Scholar 

  5. 5.

    V.I. Polezhaev, A.A. Gorbunov, S.A. Nikitin, and E.B. Soboleva, “Hydrostatic Compressibility Phenomena: New Opportunities for Near Critical Research in Microgravity,” in: S.S. Sadhal (ed.), Ann. New York Acad. Sci.: Proc. Interdisciplinary Transport Phenomena in the Space Sciences. Vol. 1077, Blackwill Publ., Boston (2006), p. 304.

    Google Scholar 

  6. 6.

    A.A. Gorbunov, S.A. Nikitin, and V.I. Polezhaev, “Conditions of Rayleigh-Bénard Convection Onset and Heat Transfer in a Near-Critical Medium,” Fluid Dynamics 42(5), 704 (2007).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. 7.

    S.A. Nikitin, V.I. Polezhaev and E.B. Soboleva, “Patterns and Heat Transfer in Rayleigh-Bénard Thermal Gravitational Convection in Helium (3He) near the Critical Point,” Fluid Dynamics 45(4), 517 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    A.A. Gorbunov and V.I. Polezhaev, “Perturbation Method and Numerical Modeling of Convection for the Rayleigh Problem in Fluids with Arbitrary Equations of State,” Russian Academy of Sciences, Institute for Problems in Mechanics, Preprint No. 897 [in Russian] (2008).

  9. 9.

    V.I. Polezhaev, “Flow and Heat Transfer in Laminar Natural Convection in a Vertical Layer,” in: Heat and Mass Transfer. Vol. 1 [in Russian], Moscow, Energiya (1968), p. 631.

  10. 10.

    E.B. Soboleva, “Effects of Strong Compressibility in Natural Convective Flows through Porous Media with a Near-Critical Fluid,” Fluid Dynamics 43(2), 217 (2008).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. 11.

    M.P. Vlasyuk and V.I. Polezhaev, “Natural Convection and Heat Transfer in Permeable Porous Materials,” USSR Academy of Sciences, Keldysh Institute of Applied Mathematics, Preprint No. 77 [in Russian] (1975).

  12. 12.

    V.I. Polezhaev, “Numerical Investigation of Natural Convection in Liquids and Gases,” in: Certain Applications of the Grid Method in Gas Dynamics. Issue 4 [in Russian], Moscow Univ. Press, Moscow (1971), p. 86.

    Google Scholar 

  13. 13.

    G.M. Makhviladze and S.B. Shcherbak, “Numerical Method for Studying Time-Dependent Three-Dimensional Compressible Flows,” Inzh.-Fiz. Zh. 38, 528 (1980).

    MathSciNet  Google Scholar 

  14. 14.

    D.R. Chenowerth and S. Paolucci, “Natural Convection in an Enclosed Vertical Air Layer with Large Horizontal Temperature Differences,” J. Fluid Mech. 169, 173 (1986).

    ADS  Article  Google Scholar 

  15. 15.

    A.B. Kogan and H. Meyer, “Heat Transfer and Convection Onset in a Compressible Fluid: 3He near the Critical Point,” Phys. Rev. E 63. 056310 (2001).

    ADS  Article  Google Scholar 

  16. 16.

    V.I. Polezhaev, “Flow and Heat Transfer with Natural Convection of a Gas in a Closed Region after Loss of Hydrostatic Equilibrium Stability,” Fluid Dynamics 3(5), 82 (1968).

    MathSciNet  ADS  Article  Google Scholar 

  17. 17.

    V.I. Polezhaev and M.P. Vlasyuk, “Cell Convection in an Infinitely Long Horizontal Gas Layer Heated from Below,” Dokl. Akad. Nauk SSSR 195, 1058 (1970).

    Google Scholar 

  18. 18.

    V.N. Popov and G.G. Yan’kov, “Heat Transfer at Laminar Free Convection near a Vertical Plate for Fluids on the Supercritical Range of the Parameters of State,” Teplofiz. Vys. Temp. 20, 1110 (1982).

    Google Scholar 

  19. 19.

    B.S. Petukhov and A.F. Polyakov, “Ranges of ‘Deteriorated’ Heat Transfer at a Supercritical Pressure of Heat-Transport Medium,” Teplofiz. Vys. Temp. 12, 221 (1974).

    Google Scholar 

  20. 20.

    V.A. Kurganov, “Heat Transfer in Pipes at Supercritical Pressures of Heat-Transport Medium. Certain Results of Scientific Research,” in: Proc. 4th Russian National Conf. on Heat Transfer. Vol. 1 [in Russian], Moscow Energy Inst., Moscow (2006), p. 74.

    Google Scholar 

  21. 21.

    M. Assenheimer and V. Steinberg, “Rayleigh-Bénard Convection near the Gas-Liquid Critical Point,” Phys. Rev. Lett. 70, 3888 (1993).

    ADS  Article  Google Scholar 

  22. 22.

    V.I. Polezhaev, A.A. Gorbunov, and E.B. Soboleva, “Unsteady Near Critical Flows in Microgravity Environment,” in: Ann. New York Acad. Sci.: Transport Phenomena in Microgravity. Vol. 1027 (2004), p. 286.

  23. 23.

    A. Onuki, H. Hao, and R.A. Ferrel, “Fast Adiabatic Equilibration in a Single-Component Fluid near the Liquid-Vapor Critical Point,” Phys. Rev. A 41, 2256 (1990).

    ADS  Article  Google Scholar 

  24. 24.

    B. Zappoli and A. Durand-Daubin, “Heat and Mass Transport in a Near Supercritical Fluid,” Phys. Fluids 6, 1929 (1994).

    ADS  Article  Google Scholar 

  25. 25.

    M. Barmatz, I. Hahn, J.A. Lipa, and R.V. Duncan, “Critical Phenomena in Microgravity: Past, Present, and Future,” Rev. Modern Phys. 79, 1 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    L.G. Loytsianskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford (1966).

    Google Scholar 

  27. 27.

    J. Straub, L. Eicher, and A. Houpt, “Dynamic Temperature Propagation in a Pure Fluid near its Critical Point Observed under Microgravity during the German Spacelab Mission D2,” Phys. Rev. E 51, 5556 (1995).

    ADS  Article  Google Scholar 

  28. 28.

    R.A. Wilkinson, G.A. Zimmerli, H. Hao, M.R. Moldover, R.F. Berg, W.L. Johnson, R.A. Ferrel, and R.W. Gammon, “Equilibration near the Liquid-Vapor Critical Point in Microgravity,” Phys. Rev. E 57, 436 (1998).

    ADS  Article  Google Scholar 

  29. 29.

    F. Zhong and H. Meyer, “Density Equilibration near the Liquid-Vapor Critical Point of a Pure Fluid: Single Phase ZT > Tc,” Phys. Rev. E 51, 3223 (1995).

    ADS  Article  Google Scholar 

  30. 30.

    P. Carles and B. Zappoli, “Acoustic Saturation of the Critical Speeding up,” Physica D 89, 381 (1996).

    Article  Google Scholar 

  31. 31.

    M.K. Ermakov, “Heat and Mass Transfer in Supercritical Fluids on the Basis of the One-Dimensional Navier-Stokes Equations,” Mat. Model. 9(12), 31 (1997).

    MATH  Google Scholar 

  32. 32.

    B. Farouk, E.S. Oran, and T. Fusegi, “Numerical Study of Thermoacoustic Waves in an Enclosure,” Phys. Fluids 12, 1052 (2000).

    ADS  MATH  Article  Google Scholar 

  33. 33.

    B. Zappoli, S. Amiroudine, P. Carles, and J. Quazzani, “Thermoacoustic and Buoyancy-Driven Transport in a Square Side-Heated Cavity Filled with a Near-Critical Fluid,” J. Fluid Mech. 316, 53 (1996).

    ADS  MATH  Article  Google Scholar 

  34. 34.

    G. Accary, I. Raspo, P. Bontoux, and B. Zappoli, “Reverse Transition to Hydrodynamic Stability through the Schwarzschild Line in a Supercritical Fluid,” Phys. Rev. E 72, 035301 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    P. Carles, “Thermoacoustic Waves near the Liquid-Vapor Critical Point,” Phys. Fluids 18, 126102 (2006).

    ADS  Article  Google Scholar 

  36. 36.

    A. Onuki, “Thermoacoustic Effects in Supercritical Fluids near the Critical Point: Resonance, Piston Effect and Reflection,” Phys. Rev. E 76, 061126 (2007).

    MathSciNet  ADS  Article  Google Scholar 

  37. 37.

    A.A. Gorbunov, S.A. Nikitin, and V.I. Polezhaev, “Calculations of Thermoacoustic Convection Using a Multiprocessor Computer,” Uch. Zap. TsAGI 41(2), 25 (2010).

    Google Scholar 

  38. 38.

    H. Schlichting, Boundary Layer Theory, McGrow-Hill, New York (1968).

    Google Scholar 

  39. 39.

    V.I. Polezhaev and E.B. Soboleva, “Unsteady Thermo-Gravitational Convection Effects in a Side-Heated or Cooled Near-Critical Fluid,” Fluid Dynamics 37(1), 72 (2002).

    MATH  Article  Google Scholar 

  40. 40.

    P. Carles, “The Onset of Free Convection near the Liquid-Vapor Critical Point. Part 2. Unsteady Heating,” Physica D 147, 36 (2000).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  41. 41.

    E.L. Khoury and P. Carles, “Scenario for the Onset of Convection Close to the Critical Point,” Phys. Rev. E 66, 066309 (2002).

    ADS  Article  Google Scholar 

  42. 42.

    H. Meyer, “Onset of the Convection in a Supercritical Fluid,” Phys. Rev. E 73, 016311.1 (2006).

    ADS  Article  Google Scholar 

  43. 43.

    A. Furukawa, H. Meyer, A. Onuki, and A.B. Kogan, “Convection in a Very Compressible Fluid: Comparison of Simulation with Experiments,” Phys. Rev. E 68, 056309 (2003).

    ADS  Article  Google Scholar 

  44. 44.

    A. Furukawa, H. Meyer, and A. Onuki, “Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid,” Phys. Rev. E 71, 067301 (2005).

    ADS  Article  Google Scholar 

  45. 45.

    K. Kemmerle, “High Precision Thermostat: A Set of Experiment Facilities for Caloric Research in Space,” AIAA Paper No. 041 (1989).

  46. 46.

    M. Laherrere and P. Koutsikides, “ALICE, an Instrument for the Analysis of Fluids Close to the Critical Point in Microgravity,” Acta Astronaut. 29, 861 (1993).

    Article  Google Scholar 

  47. 47.

    A.A. Gorbunov, V.M. Emelyanov, A.I. Ivanov, A.V. Kalmykov, A.K. Lednev, V.I. Polezhaev, and E.B. Soboleva, “Measurement and Calculation Complex for Studying Supercritical Fluid Flows on the Basis of the Alice-1 Setup,” in: Proc. 7th Russian Symp. ‘Weightlessness Mechanics. Results and Prospects of the Fundamental Research of Gravity-Sensitive Systems’. 2000 [in Russian], Russian Academy of Sciences, Institute for Problems in Mechanics (2001), p. 181.

  48. 48.

    A.A. Gorbunov, V.M. Emelyanov, and V.I. Polezhaev, “Convective Flows in Near-Critical Fluids in Microgravity: Concepts and Results of Modeling,” [in Russian], Russian Academy of Sciences, Institute for Problems in Mechanics (1998).

  49. 49.

    I.A. Babushkin, A.F. Glukhov, A.V. Zyuzgin, S.M. Kuznetsov, G.F. Putin, V.M. Emelyanov, V.I. Polezhaev, A.I. Ivanov, A.V. Kalmykov, and M.M. Maksimova, “Convective Transducers with Gaseous and Near-Critical Media for Detecting and Measuring Microaccelerations in Actual Weightlessness. Experiments Aboard the Mir Station and Projects on the International Space Station,” in: CD-ROM Proc. 5th Int. Aerospace Congr. IAC-06. Section 17. Microgravity (2006), p. 719.

  50. 50.

    A.V. Zyuzgin, G.F. Putin, N.G. Ivanova, A.V. Chudinov, A.I. Ivanov, A.V. Kalmykov, V.I. Polezhaev, and V.M. Emelianov, “The Heat Convection of Near Critical Fluid in the Controlled Microacceleration Field under Zero-Gravity Condition,” Adv. Space Res. 32, 205 (2003).

    ADS  Article  Google Scholar 

  51. 51.

    S.V. Avdeev, A.I. Ivanov, A.V. Kalmykov, A.A. Gorbunov, S.A. Nikitin, V.I. Polezhaev, G.F. Putin, and V.V. Sazonov, “Experiments in the Far and Near Critical Fluid Aboard Mir Station with the Use of the ‘Alice-1’ Instrument,” in: Proc. Joint 10th Eur. and 6th Rus. Symp. on Phys. Sci. in Microgravity. St. Petersburg, Russia, 1997. Vol. 1, Moscow (1997), p. 333.

  52. 52.

    A.V. Zyuzgin, A.I. Ivanov, V.I. Polezhaev, G.F. Putin, and E.B. Soboleva, “Convective Flows of Near-Critical Fluids in Actual Weightlessness,” Kosm. Issl. 39(2), 188 (2001).

    Google Scholar 

  53. 53.

    D. Beysens, “Thermal and Mechanical Instabilities in Supercritical Fluids,” in: Proc. 2nd Eur. Symp. on Fluids in Space. Naples, 1996, Naples (1996), p. 15.

  54. 54.

    V.V. Sazonov, M.K. Ermakov, and A.I. Ivanov, “Measuring Microaccelerations Aboard the Orbital Station Mir during the Experiments Using the Alice Setup,” Kosm. Issl. 36(2), 156 (1998).

    Google Scholar 

  55. 55.

    V.I. Polezhaev and E.B. Soboleva, “Thermo-Gravitational and Vibrational Convection in a Near-Critical Gas in Microgravity,” Fluid Dynamics 35(3), 371 (2000).

    ADS  MATH  Article  Google Scholar 

  56. 56.

    V.I. Polezhaev, V.M. Emelianov, A.A. Gorbunov, and E.B. Soboleva, “Near Critical Convection in Ground-Based and Microgravity Environment,” Experimental Thermal and Fluid Sci. 26(2–4), 101 (2002).

    Article  Google Scholar 

  57. 57.

    D. Lyubimov, T. Lyubimova, A. Vorobev, A. Mojtabi, and B. Zappoli, “Thermal Vibrational Convection in Near-Critical Fluids. Part 1. Non-Uniform Heating,” J. Fluid Mech. 564, 159 (2006).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  58. 58.

    V.I. Polezhaev, V.M. Emelyanov, A.I. Ivanov, A.V. Kalmykov, D. Beysens, and Y. Garrabos, “Experimental Investigation of the Vibration Effect on Transport Processes in a Near-Critical Fluid in Microgravity,” Kosm. Issl. 39(2), 201 (2001).

    Google Scholar 

  59. 59.

    Y. Garrabos, D. Beysens, C. Lecoutre, A. Dejoan, V. Polezhaev, and V. Emelianov, “Thermoconvectional Phenomena Induced by Vibrations in Supercritical SF6 under Weightlessness,” Phys. Rev. E 75, 056317 (2007).

    ADS  Article  Google Scholar 

  60. 60.

    V. Emelyanov, A. Gorbunov, V. Polezhaev, A. Ivanov, G. Putin, and A. Zyuzgin, “Preparation for the CRIT Space Experiment on the ISS: An Analysis of MIR Experiments and Ground-Based Studies of Heat Transfer and Phase Transition in Near-Critical Fluid,” J. Japan Soc. Microgravity Appl. 25(3), 109 (2008).

    Google Scholar 

  61. 61.

    R.V. Siraev, “Axisymmetric Convective Boundary Layer in a Vibrating Fluid,” Fluid Dynamics 41(1), 759 (2010).

    ADS  Article  Google Scholar 

  62. 62.

    D. Beysens, P. Evesque, and Y. Garrabos, “Shake, Rattle and Roll: Using Vibration as Gravity. Europe’s Quiet Revolution in Microgravity Research,” Scientific American (2008), p. 74.

  63. 63.

    V.I. Polezhaev and S.A. Nikitin, “Local Heat Transfer Effects and Temperature Stratification under Free Convection in Enclosures,” in: 4th Russ. National Conf. on Heat Transfer. Vol. 1 [in Russian] (2006), p. 93.

  64. 64.

    V.I. Polezhaev, A.A. Gorbunov, V.M. Emelianov, A.K. Lednev, E.B. Soboleva, I.A. Babushkin, A.F. Glukhov, E.A. Zilberman, G.F. Putin, A.V. Zyuzgin, V.V. Sazonov, V.L. Levtov, V.V. Romanov, and A.I. Ivanov, “Convection and Heat Transfer in Near-Critical Fluid: Study on MIR and Project of the Experiment CRIT on ISS,” AIAA Paper No. 1305 (2003).

  65. 65.

    R.W. Lauver and G. Cambon, “DECLIC Facility: Research Capabilities for Microgravity Fluid Physics and Material Science,” AIAA Paper No. 4931 (2001).

Download references

Authors

Additional information

Original Russian Text © V.I. Polezhaev, 2011, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2011, Vol. 46, No. 2, pp. 9–32.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polezhaev, V.I. Modeling convective and wave processes and heat transfer in near-supercritical media. An overview. Fluid Dyn 46, 175–195 (2011). https://doi.org/10.1134/S0015462811020025

Download citation

Keywords

  • thermal gravitational convection in near-critical media
  • piston effect
  • thermoacoustics
  • microgravity
  • spaceborne experiments