Skip to main content
Log in

Formation of differential rotation in a cylindrical fluid layer

  • Supplement: Vychislitel’naya Mekhanika Sploshnykh Sred (Computational Continuum Mechanics)
  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The formation of differential rotation in a rotating cylindrical layer heated locally is investigated numerically. In the simulations performed, geometric parameters (the layer height and radius and the heating area), the kinematic viscosity, the heat flux, and the angular velocity of the cylinder were varied. Integral characteristics of differential rotation are obtained. The dependence of the relative angular momentum of the layer on various parameters is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Williams, “Thermal Convection in a Rotating Fluid Annulus: Part 3. Suppression of the Frictional Constraint on Lateral Boundaries, J. Atmos. Sci. 25, 1034–1045 (1968).

    Article  ADS  Google Scholar 

  2. M.V. Nezlin and E.N. Snezhkin, Rossby Vortices and Spiral Structures (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  3. V.V. Alekseev, S.V. Kiseleva, and S.S. Lappo, Laboratory Models of Physical Processes (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  4. P. Hignett, A. Ibbetson, P.D. Killworth, “On Rotating Thermal Convection Driven by Non-Uniform Heating from Below, J. Fluid. Mech. 109, 161–187 (1981).

    Article  ADS  Google Scholar 

  5. R. Hide, “An Experimental Study of Thermal Convection in Rotating Liquid,” Phil. Trans. Roy. Soc. London 250, 442–478 (1958).

    ADS  Google Scholar 

  6. H. Riehl and D. Fultz, “Jet Stream and Long Waves in a Steady Rotating-Dishpan Experiment: Structure of the Circulation,” Quart J. R. Met. Soc. 356, 215–231 (1957).

    Article  ADS  Google Scholar 

  7. H. Riehl and D. Fultz, “The General Circulation in a Steady Rotating-Dishpan Experiment,” Quart J. R. Met. Soc. 362, 389–417 (1958).

    Article  ADS  Google Scholar 

  8. T.W. Spence and D. Fultz, “Experiments on Wave-Transition Spectra and Vacillation in an open Rotating Cylinder,” J. Atmos. Sci. 34, 1261–1285 (1977).

    Article  ADS  Google Scholar 

  9. E.L. Koschmieder and E.R. Lewis, “Hadley Circulations on a Nonuniformly Heated Rotating Plate,” J. Atmos. Sci. 43, 2514–2526 (1986).

    Article  ADS  Google Scholar 

  10. M.J.S. Belton, G.R. Smith, G. Schubert, and A.D. Del Genio, “Cloud Patterns, Waves and Convection in the Venus Atmosphere,” J. Atmos. Sci. 33, 1394–1417 (1976).

    Article  ADS  Google Scholar 

  11. P.J. Gierasch, “Meridional Circulation and the Maintenance of the Venus Atmospheric Rotation,” J. Atmos. Sci. 32, 1038–1044 (1975).

    Article  ADS  Google Scholar 

  12. G. Schubert and R.E. Young, “The 4-Day Venus Circulation Driven by Periodic Thermal Forcing,” J. Atmos. Sci. 27, 523–528 (1970).

    Article  ADS  Google Scholar 

  13. W.B. Rossow, “A General Circulation Model of Venus-Like Atmosphere,” J. Atmos. Sci. 40, 273–302 (1983).

    Article  ADS  Google Scholar 

  14. N. Gillet, D. Brito, D. Jault, and H.-C. Nataf, “Experimental and Numerical Studies of Convection in a Rapidly Rotating Spherical Shell, J. Fluid. Mech. 580, 83–121 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P.L. Read, “Super-Rotation and Diffusion of Axial Angular Momentum: II. A Review of Quasi-Axisymmetric Models of Planetary Atmospheres,” Quart J. R. Met. Soc. 112, 253–272 (1986).

    Article  ADS  Google Scholar 

  16. M. Yamamoto and M. Takahashi, “Superrotation Maintained by Meridional Circulation and Waves in a Venus-Like AGCM,” J. Atmos. Sci. 63, 3296–3314 (2006).

    Article  ADS  Google Scholar 

  17. M. Yamamoto and H. Tanaka, “Are Geostrophic and Quasi-Geostrophic Approximations Valid in Venus’ Differential Super-Rotation?” J. Geophys. Astrophys. Fluid Dynam. 100, 185–197 (2006).

    Article  ADS  Google Scholar 

  18. C. Lee, S.R. Lewis, and P.L. Read, “Superrotation in a Venus General Circulation Model,” J. Geophys. Res. 112, E04S11–E04S11 (2007).

    Article  Google Scholar 

  19. T.L. Miller and R.L. Gall, “Thermally Driven Flow in a Rotating Spherical Shell: Axisymmetric States,” J. Atmos. Sci. 40, 856–868 (1982).

    Article  ADS  Google Scholar 

  20. P.L. Read, “Super-Rotation and Diffusion of Axial Angular Momentum: I. ’speed limits’ for Axisymmetric Flow in a Rotating Cylindrical Fluid Annulus,” Quart J. R. Met. Soc. 112, 231–252 (1986).

    ADS  Google Scholar 

  21. P.L. Read, Y.H. Yasuhiro, H. Yamazaki, et al., “Dynamics of Convectively Driven Jets in the Laboratory,” J. Atmos. Sci. 64, 4031–4052 (2007).

    Article  ADS  Google Scholar 

  22. V. Batalov, A. Sukhanovsky, and P. Frick, “Laboratory Study of Differential Rotation in a Convective Rotating Layer,” J. Geophys. Astrophys. Fluid Dynam. 104(4), 349–368 (2010).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.N. Sukhanovsky, 2010, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2010, Vol. 3, No. 2, pp. 103–115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanovsky, A.N. Formation of differential rotation in a cylindrical fluid layer. Fluid Dyn 46, 158–168 (2011). https://doi.org/10.1134/S0015462811010182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462811010182

Keywords

Navigation