Skip to main content
Log in

Shock wave structures ahead of nonuniform fan cascades

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

We study shock wave structures (SWS), consisting of shock waves and expansion waves between them, that occur in supersonic flow past nonuniform fan cascades when the velocity component normal to their front (“axial” component) is subsonic. The cascade nonuniformity is due to the scatter in the setting angles of identical blades, either sharp or blunt. A result of the uniformity is the generation of combined noise, whose frequencies are much smaller than the fundamental frequency of the uniform cascade, and slower nonlinear SWS attenuation. The accurate and fast “simple wave method” and “nonlinear acoustics approximation”, together with numerical algorithms for integrating Euler equations on overlapping grids (in calculating flow past blunt edges) and on SWS-adapted grids, are applied to determine the “guiding” action of nonuniform cascades and to describe the SWS evolution. The application of the Fourier analysis gives the sound field spectrum. The use of blades with rectilinear initial regions of the “backs” for reducing supersonic fan blade noise is efficient only at small (less than 0.25°) scatter in the setting angles. The shock wave structures attenuate more rapidly ahead of nonuniform cascades composed of blunt blades than ahead of those with sharp blades. For uniform cascades the blade bluntness effect is not large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taganov, “Peculiar Properties of Flows in Supersonic Axial Compressors,” Tr. TsAGI (1951).

  2. G.L. Grozdovskii, A.A. Nikol’skii, G.I. Svishchev, and G.I. Taganov, Supersonic Gas Flows within Perforated Boundaries [in Russian], Mashinostroenie, Moscow (1967).

    Google Scholar 

  3. G.Yu. Stepanov, Hydrodynamics of Turbomachinery Cascades [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  4. O.K. Lawaczek, “Calculation of the Flow Properties Up- and Downstream of and within a Supersonic Turbine Cascade,” ASME Paper No. GT-47 (1972).

  5. H.J. Lichtfuss and H. Starken, “Supersonic Cascade Flow,” in: Progr. Aerospace Sci. Vol. 15, Pergamon Press, Oxford (1974), p. 37.

    Google Scholar 

  6. R.E. York and H.S. Woodrad, “Supersonic Compressor Cascades. An Analysis of the Entrance Region Flow Field Containing Detached Shock Waves,” Trans. ASME. Ser. A. J. Eng. Power 98, 247 (1976).

    Google Scholar 

  7. A.B. Bogod, A.N. Kraiko, and E.Ya. Chernyak, “Flow of a Supersonic Ideal Gas over a Planar Cascade in the Case of a Subsonic Normal Component in Regimes with Attached Shocks,” Fluid Dynamics 14(4), 559 (1979).

    Article  Google Scholar 

  8. A.N. Kraiko, V.A. Shironosov, and E.Ya. Shironosova, “Steady-State Ideal-Gas Flow past a Plane Cascade,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 6, 35 (1984).

  9. C.L. Morfey and M.J. Fisher, “Shock-Wave Radiation from a Supersonic Ducted Rotor,” Aeronaut. J. 74(715), 579 (1970).

    Google Scholar 

  10. M.R. Fink, “Shock Wave Behavior in Transonic Compressor Noise Generation,” ASME Paper No. GT-7 (1971).

  11. I.A. Brailko, A.N. Kraiko, K.S. Pyankov, and N.N. Tillyaeva, “Aerodynamic and Acoustic Characteristics of a Supersonic Fan Cascade with a Subsonic Axial Component of the Flow Velocity,” Aeromekh. Gaz. Din. No. 4, 9 (2003).

  12. A.W. Goldstein, “Supersonic Fan Blading,” US Patent No. 3820918, 06/28/1974. Priority 01/21/1972.

  13. A.N. Kraiko, D.E. Pudovikov, and N.N. Tillyaeva, “Minimum-Drag Cascade Design for Supersonic Flow with Subsonic Normal Velocity Component,” Fluid Dynamics 30(1), 112 (1995).

    Article  MathSciNet  Google Scholar 

  14. V.G. Aleksandrov, A.N. Kraiko, S.Yu. Krasheninnikov, et al., “Blading of the Rotor of an Axial Compressor (Fan) of a Turbojet Engine,” Russian Federation Patent No. 2213272, 09/27/2003. Priority 04/02/2002.

  15. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987).

    MATH  Google Scholar 

  16. G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  17. A.N. Kraiko, Textbook on TheoreticalGasdynamics [in Russian], Moscow Physical and Technical Institute (2007).

  18. S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Gasdynamics Problems, [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  19. V.P. Kolgan, “Applying the Principle of Minimum Values of Derivatives to the Construction of Finite-Difference Schemes for Calculating Discontinuous Solutions in Gasdynamics,” Uch. Zap. TsAGI 3(6), 68 (1972).

    Google Scholar 

  20. N.I. Tillyaeva, “Generalization of the Modified Godunov Scheme to Arbitrary Irregular Grids,” Uch. Zap. TsAGI 17(2), 18 (1986). See also: A.N. Kraiko et al. (eds.) Gasdynamics. Selected Works. Vol. 2 [in Russian], Fizmatlit, Moscow (2005), p. 201.

    Google Scholar 

  21. D. Hawkins, “Multiple Tone Generation by Transonic Compressors,” J. Sound Vibr. 17, 241 (1971).

    Article  ADS  Google Scholar 

  22. M. Kurosaka, “A Note on Multiple Pure Tone Noise,” J. Sound Vibr. 19, 453 (1971).

    Article  ADS  Google Scholar 

  23. I.B. Shim, J.W. Kim, and D.J. Lee, “Numerical Study of N-Wave Propagation Using Optimized Compact Finite Difference Schemes,” AIAA J. 41, 316 (2003).

    Article  ADS  Google Scholar 

  24. G.G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  25. A.N. Kraiko and A.A. Osipov, “Damping of a Periodic Sequence of Weak Shock Waves in Channels with ’sound-Absorbing’ Walls,” Fluid Dynamics 11(4), 571, (1976).

    Article  Google Scholar 

  26. N.A. Petersson, “An Algorithm for Assembling Overlapping Grid Systems,” SIAM J. Sci. Comput. 20, 1995 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Löhner, D. Sharov, H. Luo, and R. Ramamurti, “Overlapping Unstructured Grids,” AIAA Paper No. 0439 (2001).

  28. N.I. Efremov, A.N. Kraiko, K.S. P’yankov, N.I. Tillyaeva, and Ye.A. Yakovlev, “Mathematical Simulation of Shock-Wave Structures ahead of Fan Plane Cascades and Wheels,” in: V.A. Skibin et al. (eds.), Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics, Torus Press, Moscow (2006), p. 281.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © N.L. Efremov, A.N. Kraiko, K.S. Pyankov, N.I. Tillyaeva, E.A. Yakovlev, 2010, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2010, Vol. 45, No. 2, pp. 135–152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, N.L., Kraiko, A.N., Pyankov, K.S. et al. Shock wave structures ahead of nonuniform fan cascades. Fluid Dyn 45, 289–304 (2010). https://doi.org/10.1134/S0015462810020146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462810020146

Keywords

Navigation