Skip to main content
Log in

Receptivity of a boundary layer to external sonic waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of external acoustic perturbations on a two-dimensional laminar boundary layer is studied within the framework of the asymptotic theory. Essentially nonparallel regimes of the basic flow when flows with a separation zone develop are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Ruban, “On Tollmien-Schlichting Wave Generation by Sound,” in Proc. 2nd IUTAM Symp. on Laminar-Turbulent Transition. Novosibirsk, 1984 (Springer, Berlin etc., 1985), pp. 313–320.

    Google Scholar 

  2. A.I. Ruban, “On the Generation of Tollmien-Schlichting Wave by Sound,” Fluid Dynamics 19, No. 5, 709–717 (1984).

    Article  MATH  Google Scholar 

  3. M.E. Goldstein, “Scattering of Acoustic Waves into Tollmien-Schlichting Waves by Small Streamwise Variations in Surface Geometry,” J. Fluid Mech. 154, 509–529 (1985).

    Article  MATH  ADS  Google Scholar 

  4. V.V. Sychev, A.I. Ruban, Vik.V. Sychev and G.L. Korolev, Asymptotic Theory of Separated Flows (University Press, Cambridge, 1998); V.V. Sychev, A.I. Ruban, Vik.V. Sychev et al., Asymptotic Theory of Separated Flows (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  5. V.Ya. Neiland, V.V. Bogolepov, G.N. Dudin, and I.I. Lipatov, Asymptotic Theory of Supersonic Viscous Gas Flows (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  6. F.T. Smith, “On the Non-Parallel Flow Stability of the Blasius Boundary Layer,” Proc. Roy. Soc. London. Ser. A. 366, No. 1724, 91–109 (1979).

    Article  MATH  ADS  Google Scholar 

  7. V.I. Zhuk and O.S. Ryzhov, “Free Interaction and Stability of the Boundary Layer in an Incompressible Fluid,” Dokl. Akad. Nauk SSSR 253, No. 6, 1326–1329 (1980).

    MathSciNet  ADS  Google Scholar 

  8. E.D. Terent’ev, “Linear Problem of a Vibrator in a Subsonic Boundary Layer,” Prikl. Mat. Mekh. 45, No. 6, 1049–1055 (1981).

    MathSciNet  Google Scholar 

  9. A.I. Ruban, “Stability of Pre-Separation Boundary Layer on the Leading Edge of a Thin Airfoil,” Fluid Dynamics 17, No. 6, 860–867 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  10. A.V. Fedorov and A.P. Khokhlov, “Excitation of Unstable Modes in a Supersonic Boundary Layer by Acoustic Waves,” Fluid Dynamics 26, No. 4, 531–537 (1991).

    Article  MATH  Google Scholar 

  11. I.V. Egorov, V.G. Sudakov, and A.V. Fedorov, “Numerical Modeling of the Receptivity of a Supersonic Boundary Layer,” Fluid Dynamics 41, No. 1, 37–48 (2006).

    Article  Google Scholar 

  12. I.V. Egorov, A.V. Novikov, and A.V. Fedorov, “Numerical Modeling of the Disturbances of the Separated Flow in a Rounded Compression Corner,” Fluid Dynamics 41, No. 4, 521–530 (2006).

    Article  Google Scholar 

  13. G.L. Korolev, “Asymptotic Theory of Laminar Flow Separation at a Small-Angle Corner,” Fluid Dynamics 26, No. 1, 150–152 (1991).

    Article  Google Scholar 

  14. M.A. Kravtsova, V.B. Zametaev, and A.I. Ruban, “An Effective Numerical Method for Solving Viscous-Inviscid Interaction Problems,” Phil. Trans. Roy. Soc. London. Ser. A. 363, No. 1830, 1157–1167 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. R.J. Bodonyi, “Boundary-Layer Receptivity due to a Wall Suction and Control of Tollmien-Schlichting Waves,” Phys. Fluids. A 4, No. 6, 1206–1214 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.B. Zametaev, M.A. Kravtsova, 2010, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2010, Vol. 45, No. 2, pp. 35–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zametaev, V.B., Kravtsova, M.A. Receptivity of a boundary layer to external sonic waves. Fluid Dyn 45, 196–207 (2010). https://doi.org/10.1134/S0015462810020043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462810020043

Keywords

Navigation