Skip to main content
Log in

Effect of vaporizing droplets on the structure of a submerged spray

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Heat and mass transfer in a gas-droplet spray is investigated numerically using the Eulerian description of both phases. The system of averaged equations for the dispersed phase is based on the kinetic equation for the probability density function of the particle coordinates, velocity, and temperature. With increase in the particle concentration and size, the spray becomes narrower and longer. However, for evaporating sprays, particularly with small droplets, the turbulence suppression and mixing effects are less pronounced than for jets without phase transitions. The strongest turbulence suppression is detected in the initial spray region, where the droplet concentration is maximum and the droplet size is only slightly reduced due to vaporization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Chigier, “The Atomization and Burning of Liquid Fuel Sprays,” Prog. Energy Combust. Sci. 2(2), 97–114 (1976).

    Article  Google Scholar 

  2. S.K. Aggarwal, A.Y. Tong, and W.A. Siringano, “A Comparison of Vaporization Models in Spray Calculations,” AIAA J. 22(10), 1448–1457 (1984).

    Article  ADS  Google Scholar 

  3. G.M. Faeth, “Mixing, Transport and Combustion in Sprays,” Prog. Energy Combust. Sci. 13(4), 293–345 (1987).

    Article  ADS  Google Scholar 

  4. A.H. Lefebre, Atomization and Sprays (Hemisphere, New York, 1989).

    Google Scholar 

  5. W.A. Siringano, “Fluid Dynamics of Sprays—1992 Freeman Scholar Lecture,” Trans. ASME. J. Fluid Engng. 115(3), 345–378 (1993).

    Article  Google Scholar 

  6. F. Peng and S.K. Aggarwal, “A Review of Droplets Dynamics and Vaporization Modeling for Engineering Calculation,” Trans. ASME. J. Eng. Gas Turbines and Power 117(3), 453–461 (1995).

    Article  Google Scholar 

  7. C.T. Crowe, M.P. Sharma, and D.E. Stock, “The Particle-Source-in-Cell (PSI-Cell) Model for Gas-Droplet Flows,” Trans. ASME. Ser. D. J. Basic Eng. 99(2), 325–332 (1977).

    Google Scholar 

  8. A.S.P. Solomon, J.S. Shuen, Q.F. Zhang, and G.M. Faeth, “Measurements and Predictions of the Structure of Evaporating Sprays,” Trans. ASME. J. Heat Transfer 107(3), 679–686 (1985).

    ADS  Google Scholar 

  9. A.A. Mostafa and S.E. Elghobashi, “A Two-Equation Model for Jet Flows with Vaporizing Droplets,” Fluid Dynamics 25(3), 73–78 (1990).

    MathSciNet  Google Scholar 

  10. A.A. Mostafa and H.C. Mongia, “On the Modeling of Turbulent Evaporating Sprays: Eulerian versus Lagrangian Approach,” Int. J. Heat Mass Transfer 30(12), 2583–2593 (1987).

    Article  ADS  Google Scholar 

  11. A. Berlemont, M.S. Grancher, and G. Gousbet, “Heat and Mass Coupling between Vaporizing Droplets and Turbulence using Lagrangian Approach,” Int. J. Heat Mass Transfer 38(16), 3023–3034 (1995).

    Article  MATH  Google Scholar 

  12. Y.V. Zuev and I.A. Lepeshinskii, “Two-Phase Multicomponent Turbulent Jet with Phase Transitions,” Fluid Dynamics 30(5), 750–757 (1995).

    Article  Google Scholar 

  13. X.Q. Chen and J.F.C. Pereira, “Computation of Turbulent Evaporating Spray with Well-Specified Measurements: a Sensitivity Study on Droplet Properties,” Int. J. Heat Mass Transfer 39(3), 441–454 (1996).

    Article  Google Scholar 

  14. M. Sommerfeld, “Analysis of Isothermal and Evaporating Turbulent Sprays by Phase-Doppler Anemometry and Numerical Calculations,” Int. J. Heat Fluid Flow 19(2), 173–186 (1998).

    Article  Google Scholar 

  15. D.I. Kolaitis and M.A. Founti, “A Comparative Study of Numerical Models for Eulerian-Lagrangian Simulations of Turbulent Evaporating Sprays,” J. Heat Fluid Flow 27(3), 424–435 (2006).

    Article  Google Scholar 

  16. M. Sommerfeld, G. Kohnen, and M. Rueger, “Some Open Questions and Inconsistencies of Lagrangian Particle Dispersion Models,” Proc. 9th Int. Symp. on Turbulent Shear Flows (Kyoto, Japan, 1993), Paper 15.1.

  17. E.P. Volkov, L.I. Zaichik, and V.A. Pershukov, Modeling of Solid-Fuel Combustion [in Russian] (Nauka, Moscow, 1994).

    Google Scholar 

  18. I.V. Derevich, “Hydrodynamics and Heat and Mass Transfer of Particles in Turbulent Gas-Particle Tube and Axisymmetric-Jet Flows,” Teplofiz. Vys. Temper. 40(1), 86–99 (2002).

    Google Scholar 

  19. M. Pakhomov, K. Sharov, D. Starodumova, et al. “Experimental and Numerical Simulation of Turbulent Gas-Droplet Evaporating Spray,” Proc. 6th Int. Conf. Multiphase Flow ICMF’2007 (Leipzig, Germany, 2007), CD Rom, Paper No. 232.

  20. C.B. Hwang and C.A. Lin, “Improved Low-Reynolds-Number -Model Based on Direct Simulation Data,” AIAA J. 36(1), 38–43 (1998).

    Article  MATH  ADS  Google Scholar 

  21. L. Boguslavskii and C.O. Popiel, “Flow Structure of the Free Round Turbulent Jet in the Initial Region,” J. Fluid Mech. 70 Pt. 3, 531–539 (1979).

    Article  ADS  Google Scholar 

  22. N.R. Panchapakesan and J.L. Lumley, “Turbulence Measurements in Axisymmetric Jets of Air and Helium. Pt. 1. Air Jet,” J. Fluid Mech. 246, 197–223 (1993).

    Article  ADS  Google Scholar 

  23. T.-W. Kuo and F.V. Bracco, “On the Scaling of Impulsively Started Incompressible Turbulent Round Jet,” Trans. ASME, J. Fluid Eng. 104, 191–197 (1982).

    Article  ADS  Google Scholar 

  24. V.I. Terekhov and M.A. Pakhomov, “The Thermal Efficiency of Near-Wall Gas-Droplet Screens. I. Numerical Modeling,” Int. J. Heat Mass Transfer 48(9), 1747–1759 (2005).

    Article  Google Scholar 

  25. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980).

    MATH  Google Scholar 

  26. B.P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. J.P. Van Doormaal and G.D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flow,” Int. J. Numerical Heat Transfer A 7(2), 147–163 (1984).

    MATH  ADS  Google Scholar 

  28. S.Yu. Krasheninnikov, “Calculation of Axisymmetric Swirling and Non-Swirling Turbulent Jets,” Fluid Dynamics 7(3), (1972).

  29. G. Hestroni and M. Sokolov, “Distribution of Mass, Velocity, and Intensity of Turbulence in a Two-Phase Turbulent Jet,” Trans. ASME. Ser. E. J. Appl. Mech. 38, 315–325 (1971).

    Google Scholar 

  30. M.A. Pakhomov, M.V. Protasov, V.I. Terekhov, et al., “Experimental and Numerical Investigation of Downward Gas-Dispersed Turbulent Pipe Flow,” Int. J. Heat Mass Transfer 50(11–12), 2107–2116 (2007).

    Article  MATH  Google Scholar 

  31. H. Reichardt, Gesetzmaessigkeiten der Freien Turbulenz (VDI-Forschungsheft, 1942).

  32. G.N. Abramovich, T.A. Girshovich, S.Yu. Krasheninnikov, et al. Theory of Turbulent Jets [in Russian] (Nauka, Moscow, 1984).

    MATH  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2009, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2009, Vol. 44, No. 3, pp. 102–113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhomov, M.A., Terekhov, V.I. Effect of vaporizing droplets on the structure of a submerged spray. Fluid Dyn 44, 419–429 (2009). https://doi.org/10.1134/S0015462809030090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462809030090

Keywords

Navigation