Fluid Dynamics

, Volume 44, Issue 1, pp 141–157 | Cite as

Aerodynamic coefficients of a spinning sphere in a rarefied-gas flow

  • A. N. Volkov


A three-dimensional rarefied-gas flow past a spinning sphere in the transitional and near-continuum flow regimes is studied numerically. The rarefaction and compressibility effects on the lateral (Magnus) force and the aerodynamic torque exerted on the sphere are investigated for the first time. The coefficients of the drag force, the Magnus force, and the aerodynamic torque are found for Mach numbers ranging from 0.1 to 2 and Knudsen numbers ranging from 0.05 to 20. In the transitional regime, at a certain Knudsen number depending on the Mach number the Magnus force direction changes. This change is attributable to the increase in the role of normal stresses and the decrease in the contribution of the shear stresses to the Magnus force with decrease in the Knudsen number. A semi-empirical formula for the calculation of the Magnus force coefficient in the transitional flow regime is proposed.


spinning sphere transitional flow regime drag force coefficient Magnus force aerodynamic torque coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.I. Rubinow and J.B. Keller, “The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid,” J. Fluid Mech. 11 Pt 3, 447–459 (1961).MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S.A. Morsi and A.J. Alexander, “An Investigation of Particle Trajectories in Two-Phase Flow Systems,” J. Fluid Mech. 55 Pt 2, 193–208 (1972).MATHCrossRefADSGoogle Scholar
  3. 3.
    N.A. Zarin, Measurement of Non-Continuum and Turbulence Effects on Subsonic Sphere Drag (NASA Report NCR-1585, 1970).Google Scholar
  4. 4.
    W.R. Lawrence, Free-Flight Range Measurements of Sphere Drag at Low Reynolds Numbers and Low Mach Numbers (Arnold Eng. Development Center. Report AEDC-TR-67-218, 1967).Google Scholar
  5. 5.
    A.B. Bailey and J. Hiatt, Free-Flight Measurements of Sphere Drag at Subsonic, Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and Near-Free-Molecular Flow Conditions (Arnold Eng. Development Center. Report AEDC-TR-70-291, 1971).Google Scholar
  6. 6.
    A.B. Bailey and J. Hiatt, “Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers,” AIAA J. 10(11), 1436–1440 (1972).CrossRefADSGoogle Scholar
  7. 7.
    C.B. Henderson, “Drag Coefficients of Spheres in Continuum and Rarefied Flows,” AIAA J. 14(6), 707–708 (1976).CrossRefADSGoogle Scholar
  8. 8.
    L.E. Sternin, B.N. Maslov, A.A. Shraiber, and A.M. Podvysotskii, Two-Phase Mono- and Polydisperse Gas-Particle Flows [in Russian] (Mashinostroenie, Moscow, 1980).Google Scholar
  9. 9.
    P.P. Brown and D.F. Lawler, “Sphere Drag and Settling Velocity Revisited,” J. Environment. Eng. 129(3), 222–231 (2003).CrossRefGoogle Scholar
  10. 10.
    Ch.-T. Wang, “Free-Molecular Flow over a Rotating Sphere,” AIAA J. 10(5), 713–714 (1972).CrossRefADSGoogle Scholar
  11. 11.
    S.G. Ivanov and A.M. Yashin, “Forces and Moments Acting on Bodies Rotating about a Symmetry Axis in Free Molecular Flow,” Fluid Dynamics 15(3), 449 (1980).MATHCrossRefGoogle Scholar
  12. 12.
    H. Niazmand and M. Renksizbulut, “Surface Effects on Transient Three-Dimensional Flows Around Rotating Spheres at Moderate Reynolds Numbers,” Computers and Fluids 32(10), 1405–1433 (2003).MATHCrossRefGoogle Scholar
  13. 13.
    Y. Tsuji, Y. Morikawa, and O. Mizuno, “Experimental Measurements of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers,” Trans. ASME. J. Fluids Eng. 107(4), 484–488 (1985).CrossRefGoogle Scholar
  14. 14.
    B. Oesterle and T. Bui Dinh, “Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers,” Experim. Fluids 25(1), 16–22 (1998).CrossRefADSGoogle Scholar
  15. 15.
    J.H. Maccoll, “Aerodynamics of a Spinning Sphere,” J. Roy. Aeronaut. Soc. 32 777–798 (1928).Google Scholar
  16. 16.
    V.A. Naumov, A.D. Solomenko, and V.P. Yatsenko, “Effect of the Magnus Force on the Motion of a Rigid Spherical Body at a High Angular Velocity,” Inzh. Fiz. Zh. 65(3), 287–290 (1993).Google Scholar
  17. 17.
    N. Chegroun and B. Oesterle, “Etude Numérique de la Trainée, de la Portance et du Couple sur une Sphere en Translation et en Rotation,” (Actes 11éme Congrés Francais Mecanique, Lille-Villeneuve d’Ascq, France, 1993. V. 3), 81–84.Google Scholar
  18. 18.
    S.C.R. Dennis, S.N. Singh, and D.B. Ingham, “The Steady Flow due to a Rotating Sphere at Low and Moderate Reynolds Numbers,” J. Fluid Mech. 101 Pt 2, 257–279 (1980).MATHCrossRefADSGoogle Scholar
  19. 19.
    K.I. Borg, L.H. Soderholm, and H. Essen, “Force on a Spinning Sphere Moving in a Rarefied Gas,” Phys. Fluids 15(3), 736–741 (2003).CrossRefADSGoogle Scholar
  20. 20.
    P.D. Weidman and A. Herczynski, “On the Inverse Magnus Effect in Free-Molecular Flow,” Phys. Fluids. 16(2), L9–L12 (2004).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    A.N. Volkov, “Numerical Modeling of the Magnus Force and the Aerodynamic Torque on a Spinning Sphere in Transitional Flow,” (Proc. 25th Int. Symp. Rarefied Gas Dynamics, St. Petersburg, Russia, 2006) (Eds. M. Ivanov and A. Rebrov, SBRAS Press, Novosibirsk, 2007), 771–776.Google Scholar
  22. 22.
    M.N. Kogan, Rarefied-Gas Dynamics [in Russian] (Nauka, Moscow, 1967).Google Scholar
  23. 23.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).Google Scholar
  24. 24.
    F.C. Hurlbut, “On the Molecular Interactions between Gases and Solids,” in: Dynamics of Manned Lifting Planetary Entry (Wiley, New York, 1963), 754–777.Google Scholar
  25. 25.
    V.P. Shidlovskii, Introduction to Rarefied Gas Dynamics [in Russian] (Nauka, Moscow, 1965).Google Scholar
  26. 26.
    G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik (Teubner, Leipzig, 1876).Google Scholar
  27. 27.
    O.M. Belotserkovskii, A.I. Erofeev, and V.E. Yanitskii, “Nonstationary Method of Direct Statistical Simulation of Rarefied Gas Flows,” Zh. Vych. Matem. Mat. Fiz. 20(5), 1174–1204 (1980).MathSciNetGoogle Scholar
  28. 28.
    M.S. Ivanov and S.V. Rogazinskii, “Comparative Analysis of the Algorithms of the Direct Statistical Simulation Method in Rarefied Gas Dynamics,” Zh. Vych. Matem. Mat. Fiz. 28(7), 1058–1070 (1988).MathSciNetGoogle Scholar
  29. 29.
    A.N. Volkov, “The Aerodynamic and Heat Properties of a Spinning Spherical Particle in Transitional Flow,” (Proc. 6th Int. Conf. Multiphase Flow, Leipzig, ICMF’2007, CD, Paper S2 Mon C 6).Google Scholar
  30. 30.
    V.V. Riabov, “Aerodynamics of a Spinning Cylinder in Rarefied Gas Flows,” J. Spacecraft and Rockets 36(3), 486–488 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. N. Volkov

There are no affiliations available

Personalised recommendations