Skip to main content
Log in

Subgrid continuum modeling of particle motion in a turbulent flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

An Eulerian continuum approach to modeling the motion of dispersed particles within the framework of the large-eddy simulation method is developed. The approach is based on a kinetic equation for the filtered probability density function for the particle velocity in a turbulent flow. Models for the subgrid turbulent stresses of the dispersed phase are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.A. Druzhinin and S. Elghobashi, “Direct Numerical Simulation of Bubble-Laden Turbulent Flows Using the Two-Fluid Formulation,” Phys. Fluids 10(3), 685–697 (1998).

    Article  ADS  Google Scholar 

  2. O.A. Druzhinin and S. Elghobashi, “On the Delay Rate of Isotropic Turbulence Laden with Microparticles,” Phys. Fluids 11(3), 602–610 (1999).

    Article  ADS  Google Scholar 

  3. S.L. Rani and S. Balachandar, “Evaluation of the Equilibrium Eulerian Approach for the Evolution of Particle Concentration in Isotropic Turbulence,” Int. J. Multiphase Flow 29(12), 1793–1816 (2003).

    Article  MATH  Google Scholar 

  4. B. Shotorban and S. Balachandar, “Particle Concentration in Homogeneous Shear Turbulence Simulated via Lagrangian and Equilibrium Eulerian Approaches,” Phys. Fluids 18(6), 065105-065105-13 (2006).

    Google Scholar 

  5. O. Simonin, P. Février, and J. Laviéville “On the Spatial Distribution of Heavy Particle Velocities in Turbulent Flow: from Continuous Field to Particulate Chaos,” J. Turbulence 3(040), (2002).

  6. P. Février, O. Simonin, and K.D. Squires, “Partitioning of Particle Velocities in Gas-Solid Turbulent Flows into a Continuous Field and a Spatially Uncorrelated Random Distribution: Theoretical Formalism and Numerical Study,” J. Fluid Mech. 533, 1–46 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R.V.R. Pandya and F. Mashayek, “Two-Fluid Large-Eddy Simulation Approach for Particle-Laden Turbulent Flows,” Int. J. Heat Mass Transfer 45, 4753–4759 (2002).

    Article  MATH  Google Scholar 

  8. M.W. Reeks, “On the Continuum Equation for Dispersed Particles in Nonuniform Flows,” Phys. Fluids A 4(6), 1290–1303 (1992).

    Article  MATH  ADS  Google Scholar 

  9. M. Moreau, B. Bedat, and O. Simonin, “From Euler-Lagrange to Euler-Euler Large Eddy Simulation Approaches for Gas-Particle Turbulent Flows,” in: Proc. ASME Fluids Eng. Summer Conf. Houston, USA, FEDS2005-77306 (Houston, USA, 2005).

  10. L.I. Zaichik and V.M. Alipchenkov, Statistical Models of Particle Motion in Turbulent Fluid [in Russian] (Fizmatlit, Moscow, 2007).

    Google Scholar 

  11. I.V. Derevich, “Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows,” Int. J. Heat Mass Transfer 43(19), 3709–3723 (2000).

    Article  MATH  Google Scholar 

  12. V.M. Alipchenkov and L.I. Zaichik, “Differential and Algebraic Models for the Second Moments of Particle Velocity and Temperature Fluctuations in Anisotropic Turbulent Flows,” Fluid Dynamics 42(2), (2007).

  13. P. Fede and O. Simonin, “Numerical Study of the Subgrid Fluid Turbulence Effects on the Statistics of Heavy Colliding Particles,” Phys. Fluids 18(4), 045103-1–0451103-17 (2006).

    Article  ADS  Google Scholar 

  14. M. Germano, “A Direct Relation between the Filtered Subgrid Stress and the Second Order Structure Function,” Phys. Fluids 19(3), 038102-1–138102-2 (2007).

    Article  ADS  Google Scholar 

  15. L.I. Zaichik and V.M. Alipchenkov, “Pair Dispersion and Preferential Concentration of Particles in Isotropic Turbulence,” Phys. Fluids 15(6), 1776–1787 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  16. O. Simonin, L.I. Zaichik, V.M. Alipchenkov, and P. Février, “Connection between Two Statistical Approaches for the Modelling of Particle Velocity and Concentration Distributions in Turbulent Flow: the Mesoscopic Eulerian Formalism and the Two-Point Probability Density Function Method,” Phys. Fluids 18(12), 125107-1–125107-9 (2006).

    Article  ADS  Google Scholar 

  17. D.A. Khalitov and E.K. Longmire, “Effect of Particle Size on Velocity Correlations in Turbulent Channel Flow,” in: Proc. 4th ASME-JSME Joint Fluids Eng. Conf. Honolulu, Hawaii, FEDSM03-45730 (Honolulu, Hawaii, 2003).

  18. M.W. Vance, K.D. Squires, and O. Simonin, “Properties of the Particle Velocity Field in Gas-Solid Turbulent Channel Flow,” Phys. Fluids 18(6), 063302-1–063302-13 (2006).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.M. Alipchenkov, L.I. Zaichik, 2008, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2008, Vol. 43, No. 5, pp. 67–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alipchenkov, V.M., Zaichik, L.I. Subgrid continuum modeling of particle motion in a turbulent flow. Fluid Dyn 43, 731–744 (2008). https://doi.org/10.1134/S0015462808050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462808050074

Keywords

Navigation