Skip to main content
Log in

Nonaxisymmetric solutions of Laplace's tidal equation and Rossby waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The Laplace tidal equation which plays a basic role in tide theory is investigated. A method of numerically-analytic integration of the Laplace tidal equation over the entire sphere without using the β-plane approximation is developed and its nonaxisymmetric solutions are investigated. Harmonics corresponding to long-period oscillations known as planetary or Rossby waves are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.N. Sretenskii, Dynamic Theory of Tides (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932; NITs “Regular and Chaotic Dynamics”, Moscow, Izhevsk, 2003).

    MATH  Google Scholar 

  3. S. Chapman and R.S. Lindzen, Atmospheric Tides. Thermal and Gravitational (D. Reidel, Dordrecht, 1970; Mir, Moscow, 1972).

    Google Scholar 

  4. N.S. Sidorenkov, Atmospheric Processes and the Earth's Rotation (Gidrometeoizdat, Saint-Petersburg, 2002) [in Russian].

    Google Scholar 

  5. S.-I. Akasofu and S. Chapman, Solar Terrestrial Physics (Clarendon Press, Oxford, 1972).

    Google Scholar 

  6. H. Volland, Atmospheric Tidal and Planetary Waves (Kluwer, Dordrecht, 1988).

    Google Scholar 

  7. L.A. Dikii, “The Earth's Atmosphere as an Oscillatory System,” Izv. Ross. Akad. Nauk, Fizika Atmosfery i Okeana 1(5), 469–489 (1965).

    Google Scholar 

  8. L. Bildsten, G. Ushomirsky, and C. Cutler, “Ocean g-modes in Rotating Neutron Stars,” Astrophys. J. 460(2), Pt. 1, 827–831 (1996).

    Article  ADS  Google Scholar 

  9. U. Lee and H. Saio, “Low-Frequency Non-Radial Oscillations in Rotating Stars. Pt. I. Angular Dependence,” Astrophys. J. 461, No. 2, Pt. 1, 839–845 (1997).

    Article  ADS  Google Scholar 

  10. S.S. Hough, “On the Application of Harmonic Analysis to the Dynamic Theory of Tides. Pt. I. On Laplace's ‘Oscillations of the First Species’ and on the Dynamics of Ocean Currents,” Phil. Trans. Roy. Soc. London, Ser. A 189, 201–257 (1897).

    Article  ADS  MATH  Google Scholar 

  11. S.S. Hough, “On the Application of Harmonic Analysis to the Dynamic Theory of Tides. Pt. II. On the General Integration of Laplace's Dynamical Equations,” Phil. Trans. Roy. Soc. London, Ser. A 191, 139–185 (1898).

    Article  ADS  MATH  Google Scholar 

  12. M.S. Longuet-Higgins, “The Eigenfunctions of Laplace's Tidal Equation over a Sphere,” Phil. Trans. Roy. Soc. London, Ser. A 262, 511–607 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P.N. Schwarztrauber and A. Kasahara, “The Vector Harmonic Analysis of Laplace's Tidal Equations,” SIAM Journal. Sci Stat. Comput. 6, No. 2, 464–491 (1985).

    Article  Google Scholar 

  14. M.S. Longuet-Higgins, “PlanetaryWaves on a Rotating Sphere,” Proc. Roy. Soc. London, Ser. A 279, No. 1379, 446–473 (1964).

    Article  ADS  Google Scholar 

  15. M.S. Longuet-Higgins, “Planetary Waves on a Rotating Sphere, P. II,” Proc. Roy. Soc. London, Ser. A 284, No. 1396, 40–68 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. B. Haurwitz, “The Motion of Atmospheric Disturbances on the Spherical Earth,” J. Mar. Res. 3, No. 5, 254–267 (1940).

    Google Scholar 

  17. L.D. Akulenko, S.V. Nesterov, and A.M. Shmatkov, “Natural Oscillations of the Surface of a Rotating Spherical Fluid Layer,” Fluid Dynamics 34(3), 370–378 (1999).

    MATH  Google Scholar 

  18. C.-G. Rossby et al., “Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacement of the Semi-Permanent Centers of Action,” J. Mar. Res. 2, No. 1, 38–55 (1939).

    Google Scholar 

  19. C. Eckart, Hydrodynamics of Oceans and Atmospheres (Pergamon Press, Oxford etc., 1960; NITs “Regular and Chaotic Dynamics”, Izhevsk, 2004).

    MATH  Google Scholar 

  20. F. Tricomi, Differential Equations (Editorial URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  21. E. Kamke, Differentialgleichungen: Lösungensmethoden und Lösungen (Leipzig, 1959; Lan', Saint-Petersburg, 2003).

    Google Scholar 

  22. S.M. Neamtan, “The Motion of HarmonicWaves in the Atmosphere,” J. Meteorol. 3, No. 2, 53–56 (1946).

    Article  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © M.I. Ivanov, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 4, pp. 151–161.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.I. Nonaxisymmetric solutions of Laplace's tidal equation and Rossby waves. Fluid Dyn 42, 644–653 (2007). https://doi.org/10.1134/S001546280704014X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546280704014X

Keywords

Navigation