Skip to main content
Log in

Nonlinear dynamics of large-scale vortex structures in a turbulent Ekman layer

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear regimes of roll structure development in the Ekman atmospheric boundary layer are considered. Within the framework of a turbulent boundary layer theory that takes the inherent helicity into account, the helicity effect on the stability and development of secondary vortices is studied. The stabilizing role of helicity in the Ekman layer dynamics is detected. With increasing nonlinearity the rolls become time-dependent self-oscillatory structures exchanging energy and helicity with the main flow. Multi-scale structure regimes are obtained, similar to those observable in the atmospheric boundary layer and the solitary vortex structures previously discovered in bench and numerical experiments for Ekman flows between disks rotating in opposite directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Walter and J.E. Overland, “Observations of Longitudinal Rolls in a Near Neutral Atmosphere,” Month. Weather Rev. 112, 200 (1982).

    Article  ADS  Google Scholar 

  2. S.-H. Chou and M.P. Ferguson, “Heat Fluxes and Roll Circulation over the Western Gulf Stream during an Intense Cold-Air Outbreak,” Boundary-Layer Meteor. 55, 215 (1991).

    Article  ADS  Google Scholar 

  3. J. Wurman and J. Winslow, “Intense Sub-Kilometer-Scale Boundary Layer Rolls Observed in Hurricane Fran,” Science 280, No. 5363, 555 (1998).

    Article  ADS  Google Scholar 

  4. I. Morrison, S. Businger, F. Marks, P. Dodge, and J. A. Businger, “An Observational Case for the Prevalence of Roll Vortices in the Hurricane Boundary Layer,” J. Atmos. Sci. 62, 2662 (2005).

    Article  ADS  Google Scholar 

  5. R.C. Foster, “Why Rolls Are Prevalent in the Hurricane Boundary Layer,” J. Atmos. Sci. 62, 2647 (2005).

    Article  ADS  Google Scholar 

  6. S. Leibovich, “The Form and Dynamics of Langmuir Circulations,” Annu. Rev. Fluid Mech. 15, 391 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  7. D.K. Lilly, “On the Instability of Ekman Boundary Flow,” J. Atmos. Sci. 23, 481 (1966).

    Article  ADS  Google Scholar 

  8. R. Kaylor and A. Faller, “Instability of the Stratified Ekman Boundary Layer and the Generation of Internal Waves,” J. Atmos. Sci. 29, 497 (1972).

    Article  ADS  Google Scholar 

  9. A.E. Ordanovich and Yu.V. Pashkovskaya, “Effect of Thermal Stratification on Ekman Flow Stability,” Fluid Dynamics 33(3), 355 (1998).

    Article  ADS  MATH  Google Scholar 

  10. R.A. Brown, “Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer,” Rev. Geophys. Space. Phys. 18, 683 (1980).

    Article  ADS  Google Scholar 

  11. D.L. Stensrud and H.N. Shirer, “Development of Boundary Layer Rolls from Dynamic Instabilities,” J. Atmos. Sci. 45, 1007 (1988).

    Article  ADS  Google Scholar 

  12. L.A. Mikhailova and A.E. Ordanovich, “Modeling Two-Dimensional Ordered Vortices in the Atmospheric Boundary Layer,” Meteorol. Gidrol., No. 11, 29 (1988).

  13. J.W. Deardorf, “Numerical Investigation of Neutral and Unstable Planetary Boundary Layer,” J. Atmos. Sci. 29, 91 (1972).

    Article  ADS  Google Scholar 

  14. G.N. Coleman, J.H. Ferziger, and P.R. Spalart, “A Numerical Study of the Turbulent Ekman Layer,” J. FluidMech. 213, 313 (1990).

    ADS  Google Scholar 

  15. G.N. Coleman, J.H. Ferziger, and P.R. Spalart, “A Numerical Study of the Convective Boundary Layer,” Bound. Lay. Meteor. 70, 247 (1994).

    Article  ADS  Google Scholar 

  16. P.I. San'kov and E.M. Smirnov, “Bifurcation and Transition to Turbulence in the Gap between Rotating and Stationary Parallel Disks,” Fluid Dynamics 19(5), 695 (1984).

    Article  ADS  Google Scholar 

  17. T.C. Korke and K.F. Knasiak, “Stationary Travelling Cross-Flow Mode Interactions on a Rotating Disk,” J. Fluid Mech. 355, 285 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  18. M.V. Kurganskii, Introduction to the Large-Scale Dynamics of the Atmosphere [in Russian], Gidrometeoizdat, St. Petersburg (1993).

    Google Scholar 

  19. J.C. André and M. Lesieur, “Influence of Helicity on the Evolution of Isotropic Turbulence at High Reynolds Number,” J. Fluid Mech. 81, 187 (1977).

    Article  ADS  MATH  Google Scholar 

  20. A.V. Belyan, S.S. Moiseev, and O.G. Chkhetiani, “Turbulent Viscosity in Spiral Turbulence,” Dokl. Ross. Akad. Nauk 334, 34 (1994).

    MathSciNet  Google Scholar 

  21. B.M. Koprov, V.M. Koprov, V.M. Ponomarev, and O.G. Chkhetiani, “Measuring Turbulent Helicity and Its Spectrum in the Atmospheric Boundary Layer,” Dokl. Ross. Akad. Nauk 403, 627 (2005).

    Google Scholar 

  22. A. Brissaud, U. Frisch, J. Leorat, M. Lesieur, and A. Mazure, “Helicity Cascades in Fully Developed Isotopic Turbulence,” Phys. Fluids 16, 1366 (1973).

    Article  ADS  Google Scholar 

  23. R.H. Kraichnan, “Helical Turbulence and Absolute Equilibrium,” J. Fluid Mech. 59, 745 (1973).

    Article  ADS  MATH  Google Scholar 

  24. V.M. Ponomarev, A.A. Khapaev, and O.G. Chkhetiani, “Role of Helicity in the Formation of Secondary Structures in the Ekman Boundary Layer,” Fiz. Atmos. Okeana 39, 435 (2003).

    MathSciNet  Google Scholar 

  25. O.G. Chkhetiani, “Third Moments in Spiral Turbulence,” Pisma Zh. Eksp. Teor. Fiz. 63, 768 (1996).

    Google Scholar 

  26. O.G. Chkhetiani, “Spiral Structure of the Ekman Boundary Layer,” Izv. Ross. Akad. Nauk. Fiz. Atmos. Okeana 37, 614 (2001).

    MathSciNet  Google Scholar 

  27. V.M. Ponomarev and O.G. Chkhetiani, “Semi-Empirical Model of the Atmosphere Boundary Layer with Parametrization of the Spiral Turbulence Effect,” Izv. Ross. Akad. Nauk. Fiz. Atmos. Okeana 41, 464 (2005).

    Google Scholar 

  28. P.D. Mourad and R.A. Brown, “Multiscale Large Eddy States in Weakly Stratified Planetary Boundary Layer,” J. Atmos. Sci. 47, 414 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  29. N. Hoffmann, F.H. Busse, and W.-L. Chen, “Transition to Complex Flows in the Ekman-Couette Layer,” J. Fluid Mech. 366, 311 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Hoffmann and F.H. Busse, “Isolated Solitary Vortex Solutions in the Ekman-Couette Layer,” Eur. J. Mech. Ser. B, Fluids 19, 391 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.M. Ponomarev, O.G. Chkhetiani, L.V. Shestakova, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 4, pp. 72–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomarev, V.M., Chkhetiani, O.G. & Shestakova, L.V. Nonlinear dynamics of large-scale vortex structures in a turbulent Ekman layer. Fluid Dyn 42, 571–580 (2007). https://doi.org/10.1134/S0015462807040072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807040072

Keywords

Navigation