Skip to main content
Log in

Numerical simulation of two-dimensional convection: Role of boundary conditions

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of two-dimensional, periodic in the horizontal coordinate, convection of an incompressible fluid heated from below between two horizontal planes is considered. The problem is solved in two formulations: with (stress-)free and hard (no-slip) boundary conditions on the horizontal planes. It is shown that at small supercriticalities the two-dimensional convection calculation leads to more correct results with hard than with free boundary conditions. It is established that the difference between the free and hard conditions is most strongly manifested in the pulsations of the vertical velocity component, whereas the dependence of the Nusselt number and the pulsations of the horizontal velocity component on the boundary conditions is more weakly expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Getling, Rayleigh-Bénard Convection: Structure and Dynamics (World Scientific, Singapore, 1996).

    Google Scholar 

  2. G.Z. Gershuni and E.M. Zhukhovitskii, Convective Instability of an Incompressible Fluid [in Russian] (Nauka, Moscow, 1972).

    Google Scholar 

  3. H. Yahata, “Onset of Chaos in the Rayleigh-Bénard Convection,” Progr. Theor. Phys. Suppl., No. 79, 26–74 (1984).

  4. S.Ya. Gertsenshtein and V.M. Shmidt, “Nonlinear Development and Interaction of Finite-Amplitude Perturbations in the Convective Instability of a Rotating Plane Layer,” Dokl. Akad. Nauk SSSR 225(1), 59–62 (1975).

    ADS  Google Scholar 

  5. S.Ya. Gertsenshtein, E.B. Rodichev, and V.M. Shmidt, “Interaction of Three-Dimensional Waves in a Rotating Horizontal Liquid Layer Heated from Below,” Dokl. Akad. Nauk SSSR 238(3), 545–548 (1978).

    ADS  Google Scholar 

  6. S.Ya. Gertsenshtein and E.B. Rodichev, “Models of Transition to Turbulence in Convective Instability,” Modelirovanie v Mekhanike 3(20) (4), 59–65 (1989).

    MathSciNet  Google Scholar 

  7. A.Yu. Gelfgat, “Different Modes of Rayleigh-Bénard Instability in Two- and Three-Dimensional Rectangular Enclosures,” J. Comp. Phys. 156(2), 300–324 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J.H. Curry, J.R. Herring, J. Loncaric, and S.A. Orszag, “Order and Disorder in Two- and Three-Dimensional Bénard Convection,” J. Fluid Mech. 147, 1–38 (1984).

    Article  ADS  MATH  Google Scholar 

  9. T. Cortese and S. Balachandar, “Vortical Nature of Thermal Plumes in Turbulent Convection,” Phys. Fluids A 5(12), 3226–3232 (1993).

    Article  ADS  MATH  Google Scholar 

  10. A.V. Malevsky, “Spline-Characteristic Method for Simulation of Convective Turbulence,” J. Comput. Phys. 123(2), 466–475 (1996).

    Article  ADS  MATH  Google Scholar 

  11. G. Grotzbach, “Direct Numerical Simulation of Laminar and Turbulent Bénard Convection,” J. Fluid Mech. 119, 27–53 (1982).

    Article  ADS  Google Scholar 

  12. J.B. McLaughlin and S.A. Orszag, “Transition from Periodic to Chaotic Thermal Convection,” J. Fluid Mech. 122, 123–142 (1982).

    Article  ADS  MATH  Google Scholar 

  13. R.M. Kerr, “Rayleigh Number Scaling in Numerical Convection,” J. Fluid Mech. 310, 139–179 (1996).

    Article  ADS  MATH  Google Scholar 

  14. N.V. Nikitin and V.I. Polezhaev, “Three-Dimensional Effects in Transitional and Turbulent Czochralski Thermal Convection Regimes,” Fluid Dynamics 34(6), 843–850 (1999).

    MATH  Google Scholar 

  15. V.M. Paskonov, V.I. Polezhaev, and L.A. Chudov, Numerical Simulation of Heat- and Mass Transfer Processes [in Russian] (Nauka, Moscow, 1984).

    MATH  Google Scholar 

  16. A.V. Getling, “Nonlinear Evolution of the Continuous Spectrum of Nonlinear Perturbations in the Bénard-Rayleigh Problem,” Dokl. Akad. Nauk SSSR 233(2), 308–311 (1977).

    ADS  Google Scholar 

  17. K.I. Babenko and A.I. Rakhmanov,Numerical Investigation of Two-Dimensional Convection [in Russian], Preprint No. 118 (M.V. Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1988).

    Google Scholar 

  18. O.V. Rodicheva and E.B. Rodichev, “Two-Dimensional Turbulence in the Rayleigh-Bénard Problem,” Dokl. Ros. Akad. Nauk 359(4), 486–489 (1998).

    MathSciNet  Google Scholar 

  19. E. Zienicke, N. Seehafer, and F. Feudel, “Bifurcations in Two-Dimensional Rayleigh-Bénard Convection,” Phys. Rev. E 57(1), 428–435 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Veronis, “Large-Amplitude Bénard Convection,” J. Fluid Mech. 26(Pt 1), 49–68 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. D.R. Moore and N.O. Weiss, “Two-Dimensional Rayleigh-Bénard Convection,” J. Fluid Mech. 58(Pt 2), 289–312 (1973).

    Article  ADS  MATH  Google Scholar 

  22. I. Palymskii, “Direct Numerical Simulation of Turbulent Convection,” in Progress in Computational Heat and Mass Transfer (Proc. 4th Intern. Conf. on Comput. Heat and Mass Transfer ICCHMT2005), Ed. by R. Bennacer (Lavoisier, Paris, 2005), Vol. 1, 101–106.

    Google Scholar 

  23. I.B. Palymskii, “Numerical Investigation of Stochastic Convection of Chemically Equilibrium Gas,” in Proc. 2nd Intern. Conf. Applied Mech. and Mater. ICAMM 2003 (Durban, South Africa, 2003), 145–150.

  24. A.V. Malevsky and D.A. Yuen, “Characteristics-Based Methods Applied to Infinite Prandtl Number Thermal Convection in the Hard Turbulent Regime,” Phys. Fluids A 3(9), 2105–2115 (1991).

    Article  ADS  MATH  Google Scholar 

  25. I. Goldhirsch, R.B. Pelz, and S.A. Orszag, “Numerical Simulation of Thermal Convection in a Two-Dimensional Finite Box,” J. Fluid Mech. 199, 1–28 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E.E. DeLuca, J. Werne, R. Rosner, and F. Cattaneo, “Numerical Simulation of Soft and Hard Turbulence: Preliminary Results for Two-Dimensional Convection,” Phys. Rev. Letters 64(20), 2370–2373 (1990).

    Article  ADS  Google Scholar 

  27. J. Werne, “Structure of Hard-Turbulent Convection in Two Dimensions: Numerical Evidence,” Phys. Rev. E 48(2), 1020–1035 (1993).

    Article  ADS  Google Scholar 

  28. T.B. Lennie, D.P. McKenzie, D.R. Moore, and N.O. Weiss, “The Breakdown of Steady Convection,” J. Fluid Mech. 188, 47–85 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  29. I.B. Palymskii, “A Method of Numerical Simulation of Convective Flows,” Vychisl. Tekhnologii 5(6), 53–61 (2000).

    MathSciNet  Google Scholar 

  30. I.B. Palymskii, “Linear and Nonlinear Analysis of a Numerical Method for Calculating Convective Flows,” Sib. Zh. Vychisl. Matematiki 7(2), 143–163 (2004).

    Google Scholar 

  31. R. Farhadieh and R.S. Tankin, “Interferometric Study of Two-Dimensional Bénard Convection Cells,” J. Fluid Mech. 66(Pt 4), 739–752 (1974).

    Article  ADS  Google Scholar 

  32. R.A. Denton and I.R. Wood, “Turbulent Convection between Two Horizontal Plates,” Intern. J. Heat and Mass Transfer 22(10), 1339–1346 (1979).

    Article  ADS  Google Scholar 

  33. H.T. Rossby, “A Study of Bénard Convection with and without Rotation,” J. Fluid Mech. 36(Pt 2), 309–335 (1969).

    Article  ADS  Google Scholar 

  34. D.E. Fitzjarrald, “An Experimental Study of Turbulent Convection in Air,” J. Fluid Mech. 73(Pt 4), 693–719 (1976).

    Article  ADS  Google Scholar 

  35. A.M. Garon and R.J. Goldstein, “Velocity and Heat Transfer Measurements in Thermal Convection,” Phys. Fluids 16(11), 1818–1825 (1973).

    Article  ADS  Google Scholar 

  36. T.Y. Chu and R. J. Goldstein, “Turbulent Convection in a Horizontal Layer of Water,” J. Fluid Mech. 60(Pt 1), 141–159 (1973).

    Article  ADS  Google Scholar 

  37. W. V. R. Malkus, “Discrete Transitions in Turbulent Convection,” Proc. Roy. Soc. London, Ser. A 225(1161), 185–195 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  38. G. Neumann, “Three-Dimensional Numerical Simulation of Buoyancy-Driven Convection in Vertical Cylinders Heated from Below,” J. Fluid Mech. 214, 559–578 (1990).

    Article  ADS  MATH  Google Scholar 

  39. J.W. Deardorff and G.E. Willis, “Investigation of Turbulent Thermal Convection between Horizontal Plates,” J. Fluid Mech. 28(Pt 4), 675–704 (1967).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © I.B. Palymskii, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 4, pp. 50–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palymskii, I.B. Numerical simulation of two-dimensional convection: Role of boundary conditions. Fluid Dyn 42, 550–559 (2007). https://doi.org/10.1134/S0015462807040059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807040059

Keywords

Navigation