Skip to main content
Log in

Experimental investigation of helicoidal rolls in an advective flow over a hot horizontal surface

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A digital tracer technique is applied to reconstruct the velocity fields in a convective flow developing in a rectangular cavity filled with a layer of fluid and having a bottom consisting of two heat exchangers kept at different temperatures. The upper boundary of the fluid is free. The structure of the secondary flows in the form of streamwise helicoidal rolls generated in the boundary layer over a hot plate is studied. It is shown that the centers of roll rotation coincide with temperature minima in the boundary layer, while the roll shape and dimensions vary with the distance from the temperature jump. With increase in the temperature difference the roll dimensions decrease but the velocity of their rotation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.Z. Gershuni and E.M. Zhukhovitskii, “Stability of Plane-Parallel Convective Flows with Respect to Three-Dimensional Disturbances,” Prikl. Mat. Mekh. 33, 855 (1969).

    Google Scholar 

  2. E.M. Sparrow and R.B. Husar, “Longitudinal Vortices in Natural Convection Flow on Inclined Plates,” J. Fluid Mech. 37, 251 (1969).

    Article  ADS  Google Scholar 

  3. R. Biertumpfel and H. Beer, “Natural Convection Heat Transfer Increase at the Laminar-Turbulent Transition in the Presence of Instationary Longitudinal Vortices,” Int. J. Heat Mass Transfer 46, 3109 (2003).

    Google Scholar 

  4. H. Shaukatullah and B. Gebhart, “An Experimental Investigation of Natural Convection Flow on an Inclined Surface,” Int. J. Heat Mass Transfer 21, 1481 (1978).

    Article  Google Scholar 

  5. G.Z. Gershuni, E.M. Zhukhovitskii, and A.A. Nepomnyashchii, Stability of Convective Flows [in Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  6. J.C. Mullarney, R.W. Griffiths, and G.O. Hughes, “Convection Driven by Differential Heating at a Horizontal Boundary,” J. Fluid Mech. 516, 181 (2004).

    Article  ADS  MATH  Google Scholar 

  7. E. Schroder and K. Buhler, “Three-Dimensional Convection in Rectangular Domains with Horizontal Throughflow,” Int. J. Heat Mass Transfer 38, 1249 (1995).

    Article  Google Scholar 

  8. M.C. Kim, J.S. Baik, I.G. Hwang, D.-Y. Yoon, and C. K. Choi, “Buoyancy-Driven Convection in Plane Poiseuille Flow,” Chem. Engng. Sci. 54, 619 (1999).

    Article  Google Scholar 

  9. R.A. Brown and D. Etling, “Roll Vortices in the Planetary Boundary Layer: A Review,” Boundary-Layer Meteor. 65, 215 (1993).

    Article  ADS  Google Scholar 

  10. J. Wurman and L. Winslow, “Intense Sub-Kilometer-Scale Boundary Layer Rolls in Hurricane Fran,” Science 280, No. 5363, 555 (1998).

    Article  ADS  Google Scholar 

  11. I. Morrison, S. Businger, F. Marks, P. Dodge, and J. A. Businger, “An Observational Case for the Prevalence of Roll Vortices in the Hurricane Boundary Layer,” J. Atmos. Sci. 62, 2662 (2005).

    Article  ADS  Google Scholar 

  12. R.C. Foster, “Why Rolls are Prevalent in the Hurricane Boundary Layer,” J. Atmos. Sci. 62, 2647 (2005).

    Article  ADS  Google Scholar 

  13. I. Ginis, A.P. Khain, and E. Morozovsky, “Effects of Large Eddies on the Structure of the Marine Boundary Layer under Strong Wind Conditions,” J. Atmos. Sci. 61, 3049 (2004).

    Article  ADS  Google Scholar 

  14. G.P. Bogatyrev, “Excitation of a Cyclonic Vortex or a Laboratory Model of a Tropical Cyclone,” Pisma ZhETF 51, 557 (1990).

    Google Scholar 

  15. V.G. Batalov, G.V. Levina, A.N. Sukhanovskii, and P.G. Frik, “Velocity Fields in a Large-Scale Vortex over a Localized Heat Source in a Rotating Fluid Layer,” in Hydrodynamics. No. 14 [in Russian], Perm Univ. Press, Perm (2004), p. 9.

  16. N.B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  17. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer, Berlin (1988).

    Google Scholar 

  18. V.D. Zimin and P.G. Frik, Turbulent Convection [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  19. J.L. Tuh and T.F. Lin, “Structure of Mixed Convective Longitudinal Vortex Air Flow Driven by a Heated Circular Plate Embedded in the Bottom of a Horizontal Flat Duct,” Int. J. Heat Mass Transfer 46, 1341 (2003).

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.G. Batalov, A.N. Sukhanovskii, P.G. Frik, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 4, pp. 39–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batalov, V.G., Sukhanovskii, A.N. & Frik, P.G. Experimental investigation of helicoidal rolls in an advective flow over a hot horizontal surface. Fluid Dyn 42, 540–549 (2007). https://doi.org/10.1134/S0015462807040047

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807040047

Keywords

Navigation