Skip to main content
Log in

Periodic structures developing with account for dispersion in a turbulence model

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Wave processes are studied within the framework of a turbulence model that describes the reaction-diffusion processes in physicochemical hydrodynamics [{xc1}–{xc5}]. For certain parameters of the equation, exact analytical traveling-wave solutions in the form of kinks are obtained. In the general case, the wave processes can be analyzed using numerical simulation. It is confirmed that for a zero dispersion coefficient the nonlinear wave processes are disordered. It is established that when the dispersion terms are taken into account, as for the Kuramoto-Sivashinsky equation, periodic structures develop in the system starting from a certain threshold dispersion-coefficient value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Nikolaevskii, “Dynamics of Viscoelastic Media with Internal Oscillators,” in Recent Advances in Engineering Sciences, Ed. by S.L. Koh and C.G. Speciale (Springer, Berlin, 1989), 210–221.

    Google Scholar 

  2. M.I. Tribelsky, “Statistical Properties of Chaos at Onset of Electroconvection in Homeotropically Aligned Nematic Layer,” Phys. Rev. E. 59(3), 3729–3732 (1999).

    Article  ADS  Google Scholar 

  3. D. Tanaka, “Chemical Turbulence Equivalent to Nikolaevskii Turbulence,” Phys. Rev. E 70(1), 015202-1–015202-4 (2004).

    Article  ADS  Google Scholar 

  4. N.A. Kudryashov, “Exact Solutions of an N-Order Equation with the Burgers-Korteweg-de Vries Nonlinearity,” Mat. Modelirovanie 1(6), 57–65 (1989).

    MathSciNet  MATH  Google Scholar 

  5. M.I. Tribelsky and K. Tsuboi, “New Scenario for Transition to Turbulence?” Phys. Rev. Lett. 76(10), 1631–1634 (1996).

    Article  ADS  Google Scholar 

  6. I.A. Beresnev and V.N. Nikolaevskiy, “A Model for Nonlinear Seismic Waves in a Medium with Instability,” Physica D 66(1), 1–6 (1993).

    Article  ADS  MATH  Google Scholar 

  7. M.I. Tribelsky, “Short-Wave Instability and Transition to Chaos in Distributed Systems with an Extra Symmetry,” Uspekhi Fiz. Nauk 167(2), 167–190 (1997).

    Article  Google Scholar 

  8. V.Ya. Shkadov, “SolitaryWaves in a Layer of Viscous Liquid,” Fluid Dynamics 12, 52–55 (1977).

    Article  ADS  MATH  Google Scholar 

  9. J. Topper and T. Kawahara, “Approximate Equations for Long Nonlinear Waves on a Viscous Fluid,” J. Phys. Soc. Japan 44(2), 663–666 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  10. G.I. Sivashinsky, “Instabilities, Pattern Formation, and Turbulence in Flames,” Annu. Rev. Fluid Mech. 15, 179–199 (1983).

    Article  ADS  Google Scholar 

  11. Y. Kuramoto and T. Tsuzuki, Persistent Propagation of ConcentrationWaves in Dissipative Media Far from Thermal Equilibrium,” Progr. Theor. Phys. 55(2), 356–369 (1976).

    Article  ADS  Google Scholar 

  12. A.A. Alekseev and N.A. Kudryashov, “Properties of Nonlinear Waves in Dissipative-Dispersive Media with Instability,” Fluid Dynamics 25(4), 604–610 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. N.A. Kudryashov, “Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations,” Chaos, Solitons and Fractals 24(5), 1217–1231 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N.A. Kudryashov, “Exact Solutions of Generalized Kuramoto-Sivashinsky Equation,” Phys. Lett. A 147(5–6), 287–291 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Kassam and L.N. Trefethen, “Fourth-Order Time Stepping for Stiff PDEs,” SIAM Journal Scient. Comput. 26(4), 1214–1233 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. S.M. Cox and P.C. Matthews, “Exponential Time Differencing for Stiff Systems,” J. Comp. Phys. 176(2), 430–455 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P.C. Matthews and S.M. Cox, “One-Dimensional Pattern Formation with Galilean Invariance near a Stationary Bifurcation,” Phys. Rev. E. 62(2), R1473–R1476 (2000).

    Article  ADS  Google Scholar 

  18. D. Tanaka, “Critical Exponents of Nikolaevskii Turbulence,” (http://arxiv.org/abs/nlin.CD/0412012) (2004).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © N.A. Kudryashov, A.V. Migita, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 3, pp. 145–154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, N.A., Migita, A.V. Periodic structures developing with account for dispersion in a turbulence model. Fluid Dyn 42, 463–471 (2007). https://doi.org/10.1134/S0015462807030143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807030143

Keywords

Navigation