Skip to main content
Log in

Capillary finite-amplitude waves with Tolman’s nonlinearity

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Capillary finite-amplitude waves on a fluid surface are analyzed numerically by means of the conformal mapping method with allowance for Tolman’s nonlinearity which reflects the dependence of the surface tension coefficient on the surface curvature. The dependence of the wave profile and the wave velocity on the Tolman length is analyzed. Keywords: capillary waves, Tolman’s nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Gibbs, Scientific Papers. Vol. 1. Thermodynamics. Statistical Mechanics (Dover, New York, etc., 1906; Nauka, Moscow, 1982).

    Google Scholar 

  2. I.D. Van der Waals and F. Konstamm, Lehrbuch Der Termodinamik (Mass and Van Suchetelen; Leipzig, Amsterdam, 1908; ONTI, Moscow, 1936).

    Google Scholar 

  3. R.C. Tolman, “The Effect of Droplet Size on Surface Tension,” J. Chem. Phys. 17, No. 3, 333–337 (1949).

    Article  Google Scholar 

  4. J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (University Press, Oxford, 1982; Mir, Moscow, 1986).

    Google Scholar 

  5. M.J.P. Nijmeijer, C. Bruin, A.B. van Woerkom, A.F. Bakker, and J.M.J. van Leeuven, “Molecular Dynamics of the Surface Tension of a Drop,” J. Chem. Phys. 96, No. 1, 565–576 (1992).

    Article  ADS  Google Scholar 

  6. M.J. Haye and C. Bruin, “Molecular Dynamics Study of the Curvature Correction to the Surface Tension,” J. Chem. Phys. 100, No. 1, 556–559 (1994).

    Article  ADS  Google Scholar 

  7. V.I. Kalikhmanov, “Semiphenomelogical Theory of the Tolman Length,” Phys. Rev. E. 55, No. 38, 3068–3071 (1997).

    Article  ADS  Google Scholar 

  8. K. Koga, X.C. Zeng, A.K. Shchekin, “Validity of Tolman’s Equation: How Large Should a Droplet Be?” J. Chem. Phys. 109, No. 10, 4063–4070 (1998).

    Article  ADS  Google Scholar 

  9. A.E. van Giessen, E.M. Blokhuis, and D.J. Bukman, “Mean Field Curvature Corrections to the Surface Tension,” J. Chem. Phys. 108, No. 3, 1148–1156 (1998).

    Article  ADS  Google Scholar 

  10. D.I. Zhukhovitskii, “Structural Transition in Hot Small Clusters,” J. Chem. Phys. 110, No. 16, 7770–7778 (1999).

    Article  ADS  Google Scholar 

  11. S.V. Stepanov, V.M. Byakov, and O.P. Stepanova, “The Determination of Microscopic Surface Tension of Liquids with a Curved Interphase Boundary by Means of Positron Spectroscopy,” Rus. J. Phys. Chemistry 74,Suppl. 1, S65–S67 (2000).

    Google Scholar 

  12. T.V. Bykov and X.C. Zeng, “Statistical Mechanics of Surface Tension and Tolman Length of Dipolar Fluids,” J. Phys. Chemistry, B 105, No. 47, 11586–11594 (2001).

    Article  Google Scholar 

  13. D.I. Zhukhovitskii, “Investigation of the Microstructure of a Phase Interface Using the Molecular-Dynamics Liquid-Gas Method,” Zh. Eksp. Teor. Fiz. 121, No. 2, 396–405 (2002).

    Google Scholar 

  14. A.E. van Giessen and E.M. Blokhuis, ’Determination of Curvature Correction to the Surface Tension of a Liquid-Vapor Interface through Molecular Dynamics Simulation,” J. Chem. Phys. 116, No. 1, 302–310 (2002).

    Article  ADS  Google Scholar 

  15. A.V. Dolgikh, D.L. Dorofeev, and B.A. Zon, “Surface Energy and Tolman Length of Clusters with Dense Packing,” Zh. Khim. Fiz. 22, No. 11, 113–115 (2003).

    Google Scholar 

  16. D.I. Zhukhovitskii, “Surface Tension of a Liquid-Vapor Interface with Finite Curvature,” Kolloid. Zh. 65, No. 4, 480–494 (2003).

    Google Scholar 

  17. W. Helfrich, “Elastic Properties of Lipid Bilayers. Theory and Possible Experiments,” Z. Naturforschung, T. C. Bd. 28, No. 11/12, 693–703 (1973).

    Google Scholar 

  18. A.V. Dolgikh, D.L. Dorofeev, and B.A. Zon, “Tolman’s Nonlinearity of Capillary Waves,” Phys. Rev. E. 67, No. 5, Pt. 2, 056311.1-056311.5 (2003).

  19. L.I. Mandel’shtam, Complete Works, Vol. 1 (Izd-vo AN SSSR, Moscow, 1948) [in Russian].

    Google Scholar 

  20. Ya.I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  21. F.B. Buff, “The Spherical Interface. I. Thermodynamics,” J. Chem. Phys. 19, No. 12, 1591–1594 (1951).

    Article  Google Scholar 

  22. K. Mecke and S. Dietrich, “Effective Hamiltonian for Liquid-Vapor Interfaces,” Phys. Rev. E. 59, No. 6, 6766–6784 (1999).

    Article  ADS  Google Scholar 

  23. S. Mora, J. Daillant, K. Mecke, etc., “X-ray Synchrotron Study of Liquid-Vapor Interfaces at Short Length Scales: Effects of Long-Range Forces and Bending Energies,” Phys. Rev. Letters 90, No. 21, 216101.1–216101.4 (2003).

    Article  ADS  Google Scholar 

  24. R.K. Heilmann, M. Fukuto, and P.S. Pershan, “Quenching of Capillary Waves in Composite Wetting Films from a Binary Vapor: An X-ray Reflectivity Study,” Phys. Rev. B. 63, No. 20, 205405.1–205405.16 (2001).

    Article  ADS  Google Scholar 

  25. O. Shpyrko, P. Huber, A. Grigoriev, P.S. Pershan, B. Ocko, H. Tostmann, and M. Deutch, “X-ray Study of the Liquid Potassium Surface: Structure and Capillary Wave Excitations,” Phys. Rev. B. 67, No. 11, 115405.1–115405.5 (2003).

    Article  ADS  Google Scholar 

  26. D.G.A.L. Aarts, M. Schmidt, and H.N.W. Lekkerkerker, “Direct Visual Observation of Thermal Capillary Waves,” Science 304, No. 5672, 847–850.8 (2004).

    Article  ADS  Google Scholar 

  27. G.D. Grapper, “An Exact Solution for Progressive Capillary Wave of Arbitrary Amplitude,” J. Fluid. Mech. 2,Pt. 6, 532–540 (1957).

    Article  ADS  Google Scholar 

  28. L.W. Schwartz and J.-M. Vanden-Broeck, “Numerical Solution of the Exact Equations for Capillary Gravity Waves,” J. Fluid. Mech. 95,Pt. 1, 119–139 (1979).

    Article  MATH  ADS  Google Scholar 

  29. W.W. Schultz, J.-M. Vanden-Broeck, L. Jiang, and M. Perlin, “Highly Nonlinear Standing Water Waves with Small Capillary Effect,” J. Fluid. Mech. 369, 253–272 (1998).

    MATH  ADS  Google Scholar 

  30. L.D. Landau and E.M. Lifshitz, Theoretical Physics. Vol. 6. Hydrodynamics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  31. T.F. Coleman and Y.Y. Li, “An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds,” SIAM. J. Optimiz. 6, No. 2, 418–445 (1996).

    Article  MATH  Google Scholar 

  32. N.S. Bakhvalov, Numerical Methods, Vol. 1 (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  33. H. Jeffreys and B. Swirles, Methods of Mathematical Physics, Vol. 3 (Cambridge University Press, Cambridge, 1966; Mir, Moscow, 1970).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.V. Dolgikh, D.L. Dorofeev, B.A. Zon, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 2, pp. 148–153.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgikh, A.V., Dorofeev, D.L. & Zon, B.A. Capillary finite-amplitude waves with Tolman’s nonlinearity. Fluid Dyn 42, 282–286 (2007). https://doi.org/10.1134/S0015462807020123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807020123

Keywords

Navigation