Skip to main content
Log in

Associative Learning and Memory in Thrips tabaci (Thysanoptera, Thripidae)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Miniaturization leads to significant changes in the structure of the insect brain. The question of how these changes affect brain functioning is of great interest for understanding the evolution of the brain and cognitive characteristics in animals. Learning ability was previously described for several microinsect species, but comparative analysis of these cases is difficult due to the variable testing conditions. We developed a setup based on the Morris water maze design for aversive training of various miniature insects using visual stimuli. This setup was used to study the behavior of Thrips tabaci (Thysanoptera, Thripidae), and the ability for associative learning and memory formation was demonstrated in thrips for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Arthur, A.P., Associative learning in Itoplectis conquisitor (Say) (Hymenoptera: Ichneumonidae), Can. Entomol., 1966, vol. 98, no. 2, p. 213.

  2. Avarguès-Weber, A., d’Amaro, D., Metzler, M., Finke, V., Baracchi, D., and Dyer, A.G., Does holistic processing require a large brain? Insights from honeybees and wasps in fine visual recognition tasks, Front. Psychol., 2018, vol. 9, p. 1.

    Article  Google Scholar 

  3. Baeder, J.M. and King, B.H., Associative learning of color by males of the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae), J. Insect Behav., 2004, vol. 17, no. 2, p. 201.

  4. Beavers, J.B., Shaw, J.G., and Hampton, R.B., Color and height preference of the citrus thrips in a navel orange grove, J. Econ. Entomol., 1971, vol. 64, no. 5, p. 1112.

    Article  Google Scholar 

  5. Beckham, C.M., Color preference and flight habits of thrips associated with cotton, J. Econ. Entomol., 1969, vol. 62, no. 3, p. 591.

    Article  Google Scholar 

  6. Bowdish, T.I. and Bultman, T.L., Visual cues used by mantids in learning aversion to aposematically colored prey, Am. Midl. Nat., 1993, vol. 129, no. 2, p. 215.

    Article  Google Scholar 

  7. Brandeis, R., Brandys, Y., and Yehuda, S., The use of the Morris water maze in the study of memory and learning, Int. J. Neurosci., 1989, vol. 48, p. 29.

    Article  CAS  Google Scholar 

  8. Buehlmann, C., Mangan, M., and Graham, P., Multimodal interactions in insect navigation, Anim. Cognit., 2020, vol. 23, no. 6, p. 1129.

    Article  Google Scholar 

  9. Chilaka, N., Perkins, E., and Tripet, F., Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto, Malaria J., 2012, vol. 11, no. 27, p. 1.

  10. Chittka, L. and Niven, J., Are bigger brains better? Curr. Biol., 2009, vol. 19, no. 21, p. 995.

    Article  Google Scholar 

  11. Davis, R.L. and Zhong, Y., The biology of forgetting – a perspective, Neuron, 2017, vol. 95, no. 3, p. 490.

    Article  CAS  Google Scholar 

  12. De Agrò, M., Oberhauser, F.B., Loconsole, M., Galli, G., Dal Cin, F., Moretto, E., and Regolin, L., Multi-modal cue integration in the black garden ant, Anim. Cognit., 2020, vol. 23, no. 6, p. 1119.

    Article  Google Scholar 

  13. Demirel, N. and Yildirim, A., Attraction of various sticky color traps to Thrips tabaci Lindeman (Thysanoptera: Thripidae) and Empoasca decipiens Paoli (Homoptera: Cicadellidae) in cotton, J. Entomol., 2008, vol. 5, no. 6, p. 389.

  14. Disterhoft, J., Nurnberger, J., and Corning, W.C., “P–R” differences in intact cockroaches as a function of testing interval, Psychon. Sci., 1968, vol. 12, no. 5, p. 205.

    Article  Google Scholar 

  15. Dukas, R. and Duan, J.J., Potential fitness consequences of associative learning in a parasitoid wasp, Behav. Ecol., 2000, vol. 11, no. 5, p. 536.

    Article  Google Scholar 

  16. Eberhard, W.G., Miniaturized orb-weaving spiders: behavioural precision is not limited by small size, Proc. R. Soc. B Biol. Sci., 2007, vol. 247, no. 1622, p. 2203.

    Article  Google Scholar 

  17. Elimem, M. and Chermiti, B., Color preference of Frankliniella occidentalis (Pergande) (Thysanoptera; Thripidae) and Orius sp. (Hemiptera; Anthocoridae) populations on two rose varieties, Floricult. Ornamental Biotechnol., 2012, vol. 7, no. 1, p. 94.

  18. Farahani, H.K., Ashouri, A., Goldansaz, S.H., Shapiro, M.S., Golshani, A., and Abrun, P., Associative learning and memory duration of Trichogramma brassicae, Progr. Biol. Sci., 2014, vol. 4, no. 1, p. 87.

  19. Giurfa, M. and Malun, D., Associative mechanosensory conditioning of the proboscis extension reflex in honey-bees, Learn. Mem., 2004, vol. 11, no. 3, p. 294.

    Article  Google Scholar 

  20. Grimaldi, D. and Engel, M.S., Evolution of the Insects, New York: Cambridge University Press, 2005.

  21. Horridge, G.A., Learning of leg position by the ventral nerve cord in headless insects, Proc. R. Soc. B Biol. Sci., 1962, vol. 157, no. 966, p. 33.

    Google Scholar 

  22. Huigens, M.E., Pashalidou, F.G, Qian, M-H., Bukovinszky, T., Smid, H.M., van Loon, J.J.A., Dicke, M., and Fatouros, N.E., Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 3, p. 820.

    Article  CAS  Google Scholar 

  23. Iakovlev, I. and Reznikova, Z., Red wood ants display natural aversive learning differently depending on their task specialization, Front. Psychol., 2019, vol. 10, no. 710, p. 1.

    Article  Google Scholar 

  24. Kaissling, K.-E., Insect olfaction, in Handbook of Sensory Physiology, Vol. 4: Chemical Senses, No. 1: Olfaction, Berlin etc.: Springer, 1971, p. 351.

  25. Kartsev, V.M. and Mazokhin-Porshnyakov, G.A., Diversity of individually acquired responses in insects, Biol. Nauki, 1989, vol. 3, p. 5.

    Google Scholar 

  26. Keasar, T., Ney-Nifle, M., and Mangel, M., Evidence for learning of visual host-associated cues in the parasitoid wasp Trichogramma thalense, Isr. J. Zool., 2000, vol. 46, no. 3, p. 243.

  27. Loukola, O.J., Perry, C.J., Coscos, L., and Chittka, L., Bumblebees show cognitive flexibility by improving on an observed complex behavior, Science, 2017, vol. 355, no. 6327, p. 833.

    Article  CAS  Google Scholar 

  28. Loukola, O.J., Gatto, E., Híjar-Islas, A.C., and Chittka, L., Selective interspecific information use in the nest choice of solitary bees, Anim. Biol., 2020, vol. 70, no. 2, p. 215.

    Article  Google Scholar 

  29. Lu, F.M., Color preference and using silver mulches to control the onion thrips, Thrips tabaci Lindeman, Chin. J. Entomol., 1990, vol. 10, no. 3, p. 337.

  30. MaBouDi, H.D., Solvi, C., and Chittka, L., Bumblebees learn a relational rule but switch to a win-stay/lose-switch heuristic after extensive training, Front. Behav. Neurosci., 2020, vol. 14, p. 1.

    Article  Google Scholar 

  31. Makarova, A.A. and Polilov, A.A., Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 4. Thrips (Thysanoptera, Thripidae), Entomol. Rev., 2017, vol. 97, no. 3, p. 302.

    Article  Google Scholar 

  32. Makarova, A.A. and Polilov, A.A., Structure and ultrastructure of the Acrotrichis grandicollis (Coleoptera: Ptiliidae) compound eyes and the eye features related to miniaturization, Dokl. Biol. Sci., 2018, vol. 480, p. 97.

  33. Makarova, A.A., Polilov, A.A., and Chklovskii, D.B., Small brains for big science, Curr. Opin. Neurobiol., 2021, vol. 71, p. 77.

    Article  CAS  Google Scholar 

  34. Mansur, B.E., Rodrigues, J.R.V., and Mota, T., Bimodal patterning discrimination in harnessed honey bees, Front. Psychol., 2018, vol. 9, p. 1.

    Article  Google Scholar 

  35. Margulies, C., Tully, T., and Dubnau, J., Deconstructing memory in Drosophila, Curr. Biol., 2005, vol. 15, no. 17, p. 700.

  36. Matsumoto, Y. and Mizunami, M., Lifetime olfactory memory in the cricket Gryllus bimaculatus, J. Comp. Physiol. A, 2002, vol. 188, no. 4, p. 295.

  37. Mazokhin-Porshnyakov, G.A., Learning ability and visual cue integration in insects, Entomol. Obozr., 1968, vol. 47, no. 36, p. 362.

    Google Scholar 

  38. Mazokhin-Porshnyakov, G.A., Visual cue integration as an example of solving abstract problems in bees, Zool. Zh., 1969, vol. 48, p. 1125.

    Google Scholar 

  39. Mazokhin-Porshnyakov, G.A., Visual orientation and navigation in insects, in Prostranstvennaya orientatsiya zhivotnykh (Spatial Orientation of Animals), 1970a, p. 24.

  40. Mazokhin-Porshnyakov, G.A., Is insect behavior controlled by instinct alone? Priroda, 1970b, no. 5, p. 55.

    Google Scholar 

  41. Mazokhin-Porshnyakov, G.A. and Kazyakina, V.I., Morphological description of compound eyes and ocelli in thrips (Thysanoptera), Biol. Nauki, 1983, no. 1, p. 57.

    Google Scholar 

  42. McGuire, S.E., Deshazer, M., and Davis, R.L., Thirty years of olfactory learning and memory research in Drosophila melanogaster, Progr. Neurobiol., 2005, vol. 76, no. 5, p. 328.

  43. Minoli, S., Cano, A., Pontes, G., Magallanes, A., Roldán, N., and Barrozo, R.B., Learning spatial aversion is sensoryspecific in the hematophagous insect Rhodnius prolixus, Front. Psychol., 2018, vol. 9, p. 1.

  44. Morris, R.G.M., Spatial localization does not require the presence of local cues, Learn. Motiv., 1981, vol. 12, no. 2, p. 239.

    Article  Google Scholar 

  45. Nityananda, V. and Chittka, L., Different effects of reward value and saliency during bumblebee visual search for multiple rewarding targets, Anim. Cogn., 2021, vol. 24, no. 4, p. 803.

    Article  Google Scholar 

  46. Ofstad, T.A., Zuker, C.S., and Reiser, M.B., Visual place learning in Drosophila melanogaster, Nature, 2011, vol. 474, no. 7350, p. 204.

  47. Polilov, A.A., Small is beautiful: Features of the smallest insects and limits to miniaturization, Annu. Rev. Entomol., 2015, vol. 60, no. 1, p. 103.

    Article  CAS  Google Scholar 

  48. Polilov, A.A., Makarova, A.A., and Kolesnikova, U.K., Cognitive abilities with a tiny brain: neuronal structures and associative learning in the minute Nephanes titan (Coleoptera: Ptiliidae), Arthropod Str. Dev., 2019, vol. 48, p. 98.

  49. Pomaville, M.B. and Lent, D.D., Multiple representations of space by the cockroach, Periplaneta americana, Front. Psychol., 2018, vol. 9, p. 1.

  50. Prokopy, R.J., Averill, A.L., Cooley, S.S., and Roitberg, C.A., Associative learning in egglaying site selection by apple maggot flies, Science, 1982, vol. 218, no. 4567, p. 76.

    Article  CAS  Google Scholar 

  51. Rasnitsyn, A.P. and Quicke, D.L.J. (Eds.), History of Insects, Dordrecht: Kluwer Academic Publishers, 2002.

  52. Reznikova, Z., Spatial cognition in the context of foraging styles and information transfer in ants, Anim. Cogn., 2020, vol. 23, no. 6, p. 1143.

    Article  Google Scholar 

  53. Roper, M., Fernando, C., and Chittka, L., Insect bio-inspired neural network provides new evidence on how simple feature detectors can enable complex visual generalization and stimulus location invariance in the miniature brain of honeybees, PLoS Comput. Biol., 2017, vol. 13, no. 2, p. 1.

    Article  Google Scholar 

  54. Salas, J., Biology and life habits of the onion thrips (Thrips tabaci Linderman), Acta Hortic., 1994, vol. 358, p. 383.

  55. Schleyer, M., Fendt, M., Schuller, S., and Gerber, B., Associative learning of stimuli paired and unpaired with reinforcement: evaluating evidence from maggots, flies, bees, and rats, Front. Psychol., 2018, vol. 9, p. 1.

    Article  Google Scholar 

  56. Schwärzel, M. and Müller, U., Dynamic memory networks: dissecting molecular mechanisms underlying associative memory in the temporal domain, Cell. Mol. Life Sci., 2006, vol. 63, no. 9, p. 989.

    Article  Google Scholar 

  57. Shettleworth, S.J., Varieties of learning and memory in animals, Anim. Behav. Proc., 1993, vol. 19, no. 1, p. 5.

    Article  CAS  Google Scholar 

  58. Shull, F., Biology of the thysanoptera. I. Factors governing local distribution, Am. Natur., 1902, vol. 142, p. 161.

    Google Scholar 

  59. Smid, H.M., Wang, G., Bukovinszky, T., Steidle, J.L.M., Bleeker, M.A.K., van Loon, J.J.A., and Vet, L.E.M., Speciesspecific acquisition and consolidation of long-term memory in parasitic wasps, Proc. R. Soc. B Biol. Sci., 2007, vol. 274, no. 1617, p. 1539.

    Article  Google Scholar 

  60. Tully, T. and Quinn, W.G., Classical conditioning and retention in normal and mutant Drosophila melanogaster, J. Comp. Physiol. A, 1985, vol. 157, p. 263.

  61. Vinauger, C., Lallement, H., and Lazzari, C.R., Learning and memory in Rhodnius prolixus: Habituation and aversive operant conditioning of the proboscis extension response, J. Exp. Biol., 2013, vol. 216, no. 5, p. 892.

  62. Vorhees, C.V. and Williams, M.T., Morris water maze: procedures for assessing spatial and related forms of learning and memory, Nat. Protoc., 2006, vol. 1, no. 2, p. 848.

    Article  Google Scholar 

  63. Van der Woude, E., Huigens, M.E., and Smid, H.M., Differential effects of brain size on memory performance in parasitic wasps, Anim. Behav., 2018, vol. 141, p. 57.

    Article  Google Scholar 

  64. Watanabe, H., Kobayashi, Y., Sakura, M., Matsumoto, Y., and Mizunami, M., Classical olfactory conditioning in the cockroach Periplaneta americana, Zool. Sci., 2003, vol. 20, no. 12, p. 1447.

  65. Wessnitzer, J., Mangan, M., and Webb, B., Place memory in crickets, Proc. R. Soc. B Biol. Sci., 2008, vol. 275, p. 915.

    Article  Google Scholar 

  66. Yong, T.-H., Pitcher, S., Gardner, J., and Hoffmann, M.P., Odor specificity testing in the assessment of efficacy and non-target risk for Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), Biocontrol Sci. Technol., 2007, vol. 17, no. 2, p. 135.

Download references

ACKNOWLEDGMENTS

We are grateful to Lomonosov Moscow State University students Z. Adaeva, A. Dolgov, N. Motorin, A. Rosinskaya, and A. Melnikova for help in conducting the experiments.

Funding

This work was supported by the Russian Science Foundation (project 19-74-10019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fedorova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, M.A., Farisenkov, S.E., Timokhov, A.V. et al. Associative Learning and Memory in Thrips tabaci (Thysanoptera, Thripidae). Entmol. Rev. 102, 769–781 (2022). https://doi.org/10.1134/S0013873822060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873822060021

Keywords:

Navigation