Skip to main content
Log in

The evolution of diagnostic characters of wing venation in representatives of the subfamily Myrmeciinae (Hymenoptera, Formicidae)

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Problems of the formation of a complex of diagnostic characters that determine taxa of the subfamily Myrmeciinae are discussed. A comparative analysis of morphological data on the recent and extinct Myrmeciinae was performed. The wings of recent and Paleogene representatives of Myrmeciinae have different complexes of diagnostic characters. The wings of extinct Myrmeciinae have intermediate features of venation and demonstrate more primitive states of some characters as compared to those of recent poneromorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, R. et al., “Hybridization and Speciation,” J. Evol. Biol. 26, 229–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Agosti, D., “What Makes Formicini the Formicini?” Actes Coll. Ins. Soc. 6, 295–303 (1990).

    Google Scholar 

  3. Archibald, B., Cover, S., and Moreau, C., “Bulldog Ants of the Eocene Okanagan Highlands and History of the Subfamily (Hymenoptera: Formicidae: Myrmeciinae),” Annals Entomol. Soc. Amer. 99 (99), 487–523 (2006).

    Article  Google Scholar 

  4. Arnoldi, K.V., “One New Ant Genus and the Origin of Generic Characters of Parasitic Ants,” Russ. Entomol. Obozr. 25 (1–2), 49–51 (1933).

    Google Scholar 

  5. Belousov, L.V., Principles of General Embryology (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  6. Bookstein, F., “Size and Shape Spaces for Landmark Data in Two Dimensions (with Discussion and Rejoinder),” Stat. Sci. 1 (1), 181–242 (1986).

    Article  Google Scholar 

  7. Brown, W.L., “Contribution toward a Reclassification of the Formicidae. III. Tribe Amblyoponini (Hymenoptera),” Bull. Mus. Comp. Zool. Harvard Coll. 122 (122), 145–227 (1960).

    Google Scholar 

  8. Creighton, W.S., “The Ants of North America,” Bull. Mus. Comp. Zool. Harvard Coll. 104, 1–585 (1950).

    Google Scholar 

  9. Danforth, N.B., “The Evolution of Hymenopteran Wings: the Importance of Size,” J. Zool. 218 (218), 247–276 (1989).

    Article  Google Scholar 

  10. Dlussky, G.M., “New Fossil Ants of the Subfamily Myrmeciinae (Hymenoptera, Formicidae) from Germany,” Paleontol. Zh., No. 3, 65–69 (2012).

    Google Scholar 

  11. Dlussky, G.M. and Perfilieva, K.S., “Paleogene Ants of the Genus Archimyrmex Cockerell, 1923 (Hymenoptera, Formicidae, Myrmeciinae),” Paleontol. Zh., No. 1, 40–49 (2003).

    Google Scholar 

  12. Dlussky, G.M. and Rasnitsyn, A.P., “The Fossil Records and the Stages of Ant Evolution,” Uspekhi Sovrem. Biol. 127 (127), 118–134 (2007).

    Google Scholar 

  13. Dlussky, G.M. and Wedmann, S., “The Poneromorph Ants (Hymenoptera, Formicidae: Amblyoponinae, Ectatomminae, Ponerinae) of Grube Messel, Germany: High Biodiversity in the Eocene,” J. Syst. Palaeont. 10 (10), 725–753 (2012).

    Article  Google Scholar 

  14. Futuyma, D.J., Evolution, 2nd ed. (Sinauer Associates, Sunderland, 2009).

    Google Scholar 

  15. Grimaldi, D. and Agosti, D., “A Formicine in New Jersey Cretaceous Amber (Hymenoptera: Formicidae) and Early Evolution of the Ants,” Proc. Nat. Acad. Sci. 97 (97), 13678–13683 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hennig, W., Phylogenetic Systematics (Urbana, 1966).

    Google Scholar 

  17. Iordansky, N.N., The Evolution of Life (Akademiya, Moscow, 2001) [in Russian].

    Google Scholar 

  18. Kück, P., Garcia, F.H., Misof, B., and Meusemann, K., “Improved Phylogenetic Analyses Corroborate a Plausible Position of Martialis heureka in the Ant Tree of Life,” PLoS One 6, 1–8 (2011).

    Article  Google Scholar 

  19. Lyubarsky, G.Yu., Archetype, Style, and Rank in Biological Systematics (KMK Sci. Press, Moscow, 1996) [in Russian].

    Google Scholar 

  20. Molet, M., Wheeler, D., and Peeters, C., “Evolution of Novel Mosaic Castes in Ants: Modularity, Phenotypic Plasticity, and Colonial Buffering,” Amer. Soc. Natur. 180 (180), 328–341 (2012).

    Article  Google Scholar 

  21. Ogata, K., “A Genetic Synopsis of the Poneroid Complex of the Family Formicidae in Japan (Hymenoptera). Part I. Subfamilies Ponerinae and Cerapachyinae,” Esakia 25, 97–132 (1987).

    Google Scholar 

  22. Pavlinov, I.Ya., “Geometric Morphometry, a New Approach to Computerized Image Comparison,” in Information Technology in Biodiversity Research (2001), pp. 41–90 [in Russian].

    Google Scholar 

  23. Pavlinov, I.Ya., Introduction to Modern Phylogenetics (KMK Sci. Press, Moscow, 2005) [in Russian].

    Google Scholar 

  24. Peeters, Ch., “Convergent Evolution of Wingless Reproductives across All Subfamilies of Ants, and Sporadic Loss of Winged Queens (Hymenoptera: Formicidae),” Myrmecol. News 16, 75–91 (2012).

    Google Scholar 

  25. Peeters, Ch., Lin Chung-Chi, Quinet, Y., et al., “Evolution of a Soldier Caste Specialized to Lay Unfertilized Eggs in the Ant Genus Crematogaster (Subgenus Orthocrema),” Arthropod Struct. Devel. 42, 257–264 (2013).

    Article  Google Scholar 

  26. Perfilieva, K.S., “Variability of Quantitative Characters of Wings by the Example of Some Ant Species (Hymenoptera, Formicidae),” Uspekhi Sovrem. Biol. 127 (127), 147–156 (2007).

    Google Scholar 

  27. Perfilieva, K.S., Doctoral Dissertation in Biology (Moscow, 2008).

    Google Scholar 

  28. Perfilieva, K.S., “Trends in Evolution of Ant Wing Venation (Hymenoptera, Formicidae),” Zool. Zh. 89 (89), 965–977 (2010) [Entomol. Rev. 90 (90), 857–870 (2010)].

    Google Scholar 

  29. Rajakumar, R., Mauro, D.S., Dijkstra, M.B., et al., “Ancestral Developmental Potential Facilitates Parallel Evolution in Ants,” Science 335, 79–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Rasnitsyn, A.P., “Origin and Evolution of Hymenoptera,” Trudy Paleont. Inst. Akad. Nauk SSSR 174, 1–192 (1980).

    Google Scholar 

  31. Rasnitsyn, A.P., Selected Works in Evolutionary Biology (KMK Sci. Press, Moscow, 2005) [in Russian].

    Google Scholar 

  32. Rasnitsyn, A.P. and Dlussky, G.M., “Principles and Methods of Phylogeny Reconstruction,” in The Cretaceous Biocoenotic Crisis and the Evolution of Insects, Ed. by A.G. Ponomarenko (Nauka, Moscow, 1988), pp. 5–15 [in Russian].

    Google Scholar 

  33. Rust, J. and Andersen, M., “Giant Ants from the Paleogene of Denmark with a Discussion of the Fossil History and Early Evolution of Ants (Hymenoptera: Formicidae),” Zool. J. Linn. Soc. 125, 331–348 (1999).

    Article  Google Scholar 

  34. Severtsov, A.S., The Theory of Evolution (Vlados, Moscow, 2004) [in Russian].

    Google Scholar 

  35. Timonin, A.K., Ozerova, L.V., and Shantser, I.A., “Evolution of Succulent Senecioneae (Asteraceae) of Southern Africa,” Zh. Obshch. Biol. 75 (75), 25–37 (2014).

    CAS  PubMed  Google Scholar 

  36. Vavilov, N.I., “The Law of Homologous Series in the Inheritance of Variability,” in Theoretical Foundations of Plant Selection, Vol. 1, Ed. by N.I. Vavilov (1935), pp. 75–128 [in Russian].

    Google Scholar 

  37. Vorontsov, N.N., “Macromutation and Evolution: the Fixation of Goldschmidt's Macromutations as Species and Genus Traits. Hairlessness Mutations in Mammals,” Genetika 24 (24), 1081–1089 (1988).

    CAS  PubMed  Google Scholar 

  38. Vorontsov, N.N., “Macromutation and Evolution: the Fixation of Goldschmidt's Macromutations as Species and Genus Traits. Papillomatosis and Appearance of Macrovilli in the Rodent Stomach,” Genetika 39 (39), 519–526 (2003).

    CAS  PubMed  Google Scholar 

  39. Vorontsov, N.N., Speciation and the System of Organic World: Selected Works (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  40. Ward, P., “Phylogeny, Classification, and Species-Level Taxonomy of Ants (Hymenoptera: Formicidae),” Zootaxa 1668, 549–563 (2007).

    Google Scholar 

  41. Wheeler, W.M., “The Ants of the Baltic Amber,” Schrift. Phys.-Ökon. Ges. Königsberg 55, 1–142 (1915).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Perfilieva.

Additional information

Original Russian Text © K.S. Perfilieva, 2015, published in Zoologicheskii Zhurnal, 2015, Vol. 94, No. 10, pp. 1179–1189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfilieva, K.S. The evolution of diagnostic characters of wing venation in representatives of the subfamily Myrmeciinae (Hymenoptera, Formicidae). Entmol. Rev. 95, 1000–1009 (2015). https://doi.org/10.1134/S0013873815080072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873815080072

Keywords

Navigation