Skip to main content
Log in

New aspects in investigations of diapause and non-diapause dormancy types in insects and other arthropods

  • Published:
Entomological Review Aims and scope Submit manuscript

“A comprehensive study of the problem of diapause must be based on comparison of all the three states: diapause, quiescence, and activity”

A.M. Emme, 1953, p. 396.

Abstract

The paper resumes consideration of the problem posed by the Russian ecologist A.M. Emme (1953) on the need for a comparative study of diapause and quiescence (a non-diapause type of dormancy) in insects and other arthropods. The problem has recently become important due to the scarcity of eco-physiological studies of non-diapause dormancy, whose role in life cycle regulation remains unclear, and to the fact that most attention is now paid to diapause (as the leading adaptation in the control of seasonal development of arthropods). Analysis of data available for insects and acariform mites revealed the prospects of a comprehensive study of non-diapause forms of dormancy known presently (the common stage-independent quiescence, modified stage-specific quiescence, and post-diapause quiescence). The combination of post-diapause quiescence and diapause proper, revealed in many recent insects and acariform mites (mainly Prostigmata), may correspond to the initial ancestral state of dormancy in arthropods, representing a universal adaptation to both predictable and unpredictable environmental changes. This hypothesis gives a reasonable explanation of the possible dual nature of winter dormancy in oribatid mites (in contrast to the existing contradictory interpretations of their hibernal dormancy as only quiescence or only diapause).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V.R., Diapause in Crustaceans. The Eco-Physiological Aspects (Moscow, 1990) [in Russian].

  2. Alekseev, V.R. and Starobogatov, Ya.I., “Types of Diapause in the Crustacea: Definitions, Distribution, Evolution,” Hydrobiologia 320, 15–26 (1996).

    Article  Google Scholar 

  3. Alekseev, V.R., Ravera, O., and De Stasio, B.T., “Introduction to Diapause,” in Diapause in Aquatic Invertebrates: Theory and Human Use (Springer, 2007), pp. 3–10.

  4. Balice, E. and Han, E., “Desiccation Resistance in Pre-Diapause, Diapause and Post-Diapause Larvae of Choristoneura fumiferana (Lep.: Tortricidae),” Bull. Entomol. Res. 91, 321–326 (2001).

    Google Scholar 

  5. Beck, S.D., Insect Photoperiodism, 2nd ed. (Acad. Press, N.Y., 1980).

    Google Scholar 

  6. Belozerov, V.N., “Distribution of Quiescent Stages in the Development Cycles of Acarines (Chelicerata: Arachnida: Acari) As Compared to That of Mandibulate Arthropods (Insecta and Crustacea),” in Collected Papers in the Memory of V.P. Tyshchenko (Proc. of the Biological Research Institute of St. Petersburg State University, no. 53) (St. Petersburg, 2007), pp. 193–233 [in Russian].

  7. Belozerov, V.N. “Calyptostasy: Its Role in the Development and Life Histories of the Parasitengone Mites (Acari: Prostigmata: Parasitengona),” Acarina 16, 3–19 (2008).

    Google Scholar 

  8. Brendonck, L., “Diapause, Quiescence, Hatching Requirements: What We can Learn from Large Freshwater Branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca),” Hydrobiologia 32, 85–97 (1996).

    Article  Google Scholar 

  9. Bucking, J., Ernst, H., and Siemer, F., “Population Dynamics of Phytophagous Mites Inhabiting Rocky Shores—K-Strategists in an Extreme Environment?” Arthropod Biol. Biosyst. Ecol. Series 14, 93–143 (1998).

    Google Scholar 

  10. Cáceres, C.E., “Dormancy in Invertebrates,” Invertebrate Biology 116, 371–383 (1997).

    Article  Google Scholar 

  11. Clegg, J.S., “Cryptobiosis: a Peculiar State of Biological Organization,” Comp. Biochem. Physiol. B 128, 613–624 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Convey, P., “Overwintering Strategies of Terrestrial Invertebrates in Antarctica—the Significance of Flexibility in Extremely Seasonal Environment,” Europ. J. Entomol. 93, 489–506 (1996).

    Google Scholar 

  13. Danilevskii, A.S., Photoperiodism and Seasonal Development in Insects (Leningrad, 1961) [in Russian].

  14. Danks, H.V., “Life History and Biology of Einfeldia synchrona (Diptera: Chironomidae),” Canad. Entomol. 103(11), 1597–1606 (1971).

    Google Scholar 

  15. Danks, H.V., Insect Dormancy: an Ecological Perspective (Biol. Survey of Canada, 1987).

  16. Denlinger, D.L., “Molecular Regulation of Insect Diapause,” in Environmental Stressors and Gene Responses (Elsevier, Amsterdam, 2000), pp. 275–287.

    Google Scholar 

  17. Denlinger, D.L., “Regulation of Diapause,” Ann. Rev. Entomol. 47, 93–122 (2002).

    Article  CAS  Google Scholar 

  18. Emme, A.M., “Diapause in Insects,” Uspekhi Sovrem. Biol. 18, 56–71 (1944).

    Google Scholar 

  19. Emme, A.M., “New Data on the Diapause in Insects,” Uspekhi Sovrem. Biol. 24, 154–157 (1947).

    Google Scholar 

  20. Emme, A.M., “Some Theoretical Aspects of the Insect Diapause,” Uspekhi Sovrem. Biol. 35, 395–424 (1953).

    CAS  Google Scholar 

  21. Emme, A.M., “Physiology of the Insect Diapause,” Byul. Mosk. Obshch. Ispyt. Prirody 2, 117–137 (1967).

    Google Scholar 

  22. Evolutionary and Ecological Aspects of Crustacean Diapause: Proc. of the Symposium “Diapause in the Crustacea,” Gent, August 24–29, 1997 (1998).

  23. Fashing, N.J., “The Resistant Tritonymphal Instar and Its Implications in the Population Dynamics of Naiadacarus arboricola Fashing (Acarina: Acaridae),” Acarologia 18, 704–714 (1977).

    Google Scholar 

  24. Gurney, W.S.C., Crowley, P.H., and Nisbet, R.M., “Locking Life Cycles onto Seasons: Circle-Map Models of Population Dynamics and Local Adaptations,” J. Mathem. Biol. 30, 251–279 (1991).

    Article  Google Scholar 

  25. Gurney, W.S.C., Crowley, P.H., and Nisbet, R.M., “Stage-Specific Quiescence as a Mechanism for Synchronizing Life Cycles to Seasons,” Theor. Popul. Biol. 46, 319–343 (1994).

    Article  Google Scholar 

  26. Hand, S.C. and Podrabsky, J.E., “Bioenergetics of Diapause and Quiescence in Aquatic Animals,” Thermochimica Acta 349, 31–42 (2000).

    Article  CAS  Google Scholar 

  27. Hinton, H.E., “A New Chironomid from Africa, the Larva of Which can be Dehydrated without Injury,” Proc. Zool. Soc. London 121, 371–380 (1951).

    Google Scholar 

  28. Hodek, I., “Termination of Adult Diapause in Pyrrhocoris apterus in the Field,” Entomol. Exp. Appl. 14, 212–222 (1971).

    Google Scholar 

  29. Hodek, I., “Diapause Development, Diapause Termination and the End of Diapause,” Europ. J. Entomol. 93, 475–487 (1996).

    Google Scholar 

  30. Hodek, I., “Controversial Aspects of Diapause Development,” Europ. J. Entomol. 99, 163–175 (2002).

    Google Scholar 

  31. Katsoyannos, P., Kontodimas, D.C., and Stathas, G.J., “Summer Diapause and Winter Quiescence of Coccinella septempunctata (Col: Coccinellidae) in Greece,” Entomophaga 42, 483–491 (1997).

    Article  Google Scholar 

  32. Keilin, D., “The Problem of Anabiosis or Latent Life: History and Current Concept,” Proc. Royal Soc. London Biol. Sci. 150(939), 149–191 (1959).

    Article  CAS  Google Scholar 

  33. Koštál, V., “Eco-Physiological Phases of Insect Diapause,” J. Insect Physiol. 52, 113–127 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Koveos, D.S. and Tzanakakis, M.E., “Effect of Hydration, Photoperiod and Temperature on Diapause Termination in Eggs of Petrobia (Tetranychina) harti (Acari: Tetranychidae),” Exp. Appl. Acar. 11, 111–123 (1991).

    Article  Google Scholar 

  35. Krysan, J.I., “Diapause, Quiescence, and Moisture in the Egg of the Western Corn Rootworm, Diabrotica yirgifera,” J. Insect Physiol. 24, 535–540 (1978).

    Article  Google Scholar 

  36. Laudien, H., “Resting Stages in Development and Their Induction or Termination by the Effect of Temperature,” in Temperature and Life (Springer Verlag, 1973), pp. 390–399.

  37. Lees, A.D., Physiology of Diapause in Arthropods (Cambridge Univ. Press, 1955).

  38. Li, Y.P., Oguchi, S., and Goto, M., “Physiology of Diapause and Cold Hardiness in Overwintering Pupae of the Apple Leaf Miner Phyllonorycter ringoniella in Japan,” Physiol. Entomol. 27, 92–96 (2002).

    Article  Google Scholar 

  39. Müller, H.J., “Formen der Dormanz bei Insekten,” Nova Acta Leopoldina 35, 7–27 (1970).

    Google Scholar 

  40. Müller, H.J., Dormanz bei Arihropoden (G. Fischer Verlag, Jena, 1992).

    Google Scholar 

  41. Norton, R.A., “Evolutionary Aspects of Oribatid Mite’s Life Histories and Consequences for the Origin of the Astigmata, in Mites: Ecological and Evolutionary Analyses of Life-History Patterns, ed. by M.A. Houck (Chapman & Hall, 1994), pp. 99–135.

  42. Pires, C.S.S., Suju, E.R., Fontes, E.M.G., Tauber, C.A., and Tauber, M.J., “Dry-Season Embryonic Dormancy in Deois flavopicta (Homoptera: Cercopidae): Roles of Temperature and Moisture in Nature,” Envir. Entomol. 29, 714–720 (2000).

    Article  Google Scholar 

  43. Reeves, R.M., “Seasonal Distribution of Some Forest Soil Oribatei,” in Proc. 2nd Int. Congr. of Acarology (1967, UK) (1969), pp. 23–30.

  44. Ridsdill-Smith, T.J., “Biology and Control of Halotydeus destructor (Tucker) (Acarina: Penthaleidae): a Review,” Exp. Appl. Acarol. 21, 195–224 (1997).

    Article  Google Scholar 

  45. Saulich, A.Kh., Seasonal Development and Dispersal Capacities of Insects (St. Petersburg, 1999) [in Russian].

  46. Saulich, A.Kh. and Volkovich, T.A., Ecology of Photoperiodism in Insects (St. Petersburg, 2004) [in Russian].

  47. Saunders, D.S., Insect Clocks, 3rd ed. (Elsevier Science, 2002).

  48. Shelford, V.E., Laboratory and Field Ecology (Williams and Wilkins, Baltimore, 1929).

    Google Scholar 

  49. Shmidt, P.Yu., Anabiosis, 4th ed. (Moscow, 1955) [in Russian].

  50. Siepel, H., “Life-History Tactics of Soil Microarthropods,” Biol. Fertil. Soils 18, 263–278 (1994).

    Article  Google Scholar 

  51. Sovik, G., “The Biology and Life History of Arctic Populations of the Littoral Mite Ameronothrus lineatus (Acari, Oribatida),” Exp. App. Acarol. 34, 3–20 (2004).

    Article  Google Scholar 

  52. Tamm, J.Ch., “Temperature-Controlled Underwater Egg Dormancy and Postflood Hatching in Isotoma viridis (Collembola) as Forms of Adaptation to Annual Long-Term Flooding,” Oecologia (Berlin) 68, 241–245 (1986).

    Article  Google Scholar 

  53. Tauber, M.J., Tauber, C.A., and Masaki, S., Seasonal Adaptations of Insects (Oxford Univ. Press, 1986).

  54. Tyshchenko, V.P., “Physiology of Photoperiodism in Insects,” in Proc. of the All-Union Entomological Society, Vol. 59 (Leningrad, 1977), pp. 1–155 [in Russian].

  55. Umina, P.A. and Hoffmann, A.A., “Diapause and Implications for Control of Penthaleus Species Complex and Halotydeus destructor (Acari: Penthaleidae) in Southeastern Australia,” Exp. Appl. Acarol. 31, 209–223 (2003).

    Article  PubMed  Google Scholar 

  56. Umina, P.A., Hoffmann, A.A., and Weeks, A.R., “Biology, Ecology and Control of the Penthaleus Species Complex (Acari: Penthaleidae),” Exp. Appl. Acarol. 34, 211–237 (2004).

    PubMed  Google Scholar 

  57. Ushatinskaya, R.S., “Insect Diapause and Its Modifications,” Zh. Obshch. Biol. 34, 539–558 (1973).

    Google Scholar 

  58. Ushatinskaya, R.S., “Insect Dormancy and Its Classification,” Zool. Jahrb. Syst. 103, 76–97 (1976).

    Google Scholar 

  59. Ushatinskaya, R.S., Cryptic Life and Anabiosis (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  60. Veerman, A., “Diapause,” in Spider Mites. Their Biology, Natural Enemies and Control. Vol. 1A (Elsevier Sci. Publ., Amsterdam, 1985), pp. 279–316.

    Google Scholar 

  61. Wallace, M.M.H., “Diapause in Aestivating Eggs of Halotydeus destructor,” Austral. J. Zool. 18, 295–313 (1970a).

    Article  Google Scholar 

  62. Wallace, M.M.H., “The Influence of Temperature on the Postdiapausal Development and Survival in the Aestivating Eggs of Halotydeus destructor (Acari: Eupodidae),” Austral. J. Zool. 18, 315–329 (1970b).

    Article  Google Scholar 

  63. Wallace, M.M.H., “The Influence of Temperature and Moisture on Diapause Development in the Eggs of Bdellodes lapidaria (Acari: Adelaide),” J. Austral. Entomol. Soc. 10, 276–280 (1971).

    Article  Google Scholar 

  64. Watanabe, M., “Anhydrobiosis in Invertebrates,” Appl. Entomol. Zool. 41, 15–31 (2006).

    Article  CAS  Google Scholar 

  65. Watanabe, M., Kikawada, T., Fujita, A., and Okuda, T., “Induction of Anhydrobiosis in Fat Body Tissue from an Insect,” J. Insect Physiol. 51, 727–731 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. Watanabe, M., Nakahara, Y., Sakashita, T., et al., “Physiological Changes Leading to Anhydrobiosis Improve Radiation Tolerance in Polypedilum vanderplanki Larvae,” J. Insect Physiol. 53, 573–579 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Wohltmann, A., “The Evolution of Life Histories in Parasitengona,” Acarologia 4, 145–204 (2001).

    Google Scholar 

  68. Zaslavsky, V.A., Photoperiodic and Temperature-Based Control of Insect Development (Leningrad, 1984) [in Russian].

  69. Zein-Eldin, E.A., “Studies on the Legume Mite, Petrobia apicalis,” J. Econ. Entomol. 49, 291–296 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Belozerov, 2009, published in Entomologicheskoe Obozrenie, 2009, Vol. 88, No. 1, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belozerov, V.N. New aspects in investigations of diapause and non-diapause dormancy types in insects and other arthropods. Entmol. Rev. 89, 127–136 (2009). https://doi.org/10.1134/S0013873809020018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873809020018

Keywords

Navigation