Skip to main content
Log in

Parallel evolution of theropod dinosaurs and birds

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The hypothesis of the direct origin of birds from theropod dinosaurs has recently become widespread. Direct sisterly relationships between theropods and birds were assumed in the basis of random and formal synapomorphies, such as the number of caudal vertebrae, relative length of the humerus, and flattening of the dorsal margin of the pubis. In essence, this hypothesis is supported by the characters of theropods and birds, such as the presence of feathering, furcula, uncinate processes of ribs, pygostyle, double-condyled dorsal joint of the quadrate, and posteriorly turned pubis, which are recognized as homologies. Until recently, these characters have been regarded as avian apomorphies; however, they are presently known in various coelurosaurian groups. At the same time, they occur in various combinations in the Dromaeosauridae, Troodontidae, Oviraptoridae, Therizinosauridae, and Tyrannosauridae. None of the theropod groups possesses the entire set of these characters. This suggests that theropods and birds acquired them in parallel. Theropod dinosaurs and Sauriurae (Archaeornithes and Enantiornithes) show a number of important system synapomorphies, which indicate that they are closely related. Ornithurine birds lack such synapomorphies; however, their monophyly is supported by a large number of diagnostic characters. The hypothesis of independent origin of Sauriurae and Ornithurae is substantiated; the former are considered to have evolved from theropods in the Jurassic, while the latter deviated from a basal archosauromorph group in the Late Triassic. The hypothesis that birds existed in the Early Mesozoic is supported by the findings of small avian footprints in the Upper Triassic and Lower Jurassic of different continents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Barsbold and A. Perle, “The Modification of the Pelvis of Saurischia and a Parallel Evolution of Predatory Dinosaurs,” Tr. Sovm. Sov.-Mong. Paleontol. Ekspeditsii (8), 39–44 (1979).

  2. R. Barsbold, H. Osmolska, M. Watabe, P. J. Currie, and K. Tsogtbaatar, “A New Oviraptosaur (Dinosauria, Theropoda) from Mongolia: The First Dinosaur with Pygostyle,” Acta Palaeontol. Polonica 45(2), 97–106 (2000).

    Google Scholar 

  3. W. H. Beebe, “A Tetrapteryx Stage in the Ancestry of Birds,” ??Zoologica, New York 2(1), 8–52 (1915).

    Google Scholar 

  4. M. J. Benton, “Early Origin of Modern Birds and Mammals: Molecules vs. Morphology,” BioEssays 21, 1043–1051 (1999).

    PubMed  CAS  Google Scholar 

  5. S. Chatterjee, “Cranial Anatomy and Relationships of a New Triassic Bird from Texas,” Philos. Trans. R. Soc. London, Ser. B 332, 277–346 (1991).

    Google Scholar 

  6. S. Chatterjee, The Rise of Birds (Johns Hopkins University Press, Baltimore, 1997).

    Google Scholar 

  7. S. Chatterjee, “Protoavis and the Early Evolution of Birds,” Palaeontographica, Ser. A 254, 1–100 (1999).

    Google Scholar 

  8. L. M. Chiappe, “Aves,” in Encyclopedia of Dinosaurs, Ed. by P. J. Currie and K. Padian (Academic Press, New York, 1997), pp. 32–39.

    Google Scholar 

  9. L. M. Chiappe, “Phylogenetic Relationships among Basal Birds,” in New Perspectives on the Origin and Early Evolution of Birds, Ed. by J. Gauthier and L. M. Gall, in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History (Yale University Press, New Haven, 2001), pp. 125–139.

    Google Scholar 

  10. L. M. Chiappe, “Basal Bird Phylogeny: Problems and Solutions,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, Berkeley, 2002), pp. 448–472.

    Google Scholar 

  11. A. Chinsamy, L. M. Chiappe, and P. Dodson, “Mesozoic Avian Bone Microstructure: Physiological Implications,” Paleobiology 21(4), 561–574 (1995).

    Google Scholar 

  12. P. Christiansen and N. Bonde, “Body Plumage in Archaeopteryx: Review, and New Evidence from the Berlin Specimen,” C. R. Paleo 3(1), 99–118 (1995).

    Google Scholar 

  13. J. M. Clark, M. A. Norell, and P. J. Makovicky, “Cladistic Approaches to the Relationships of Birds to Other Theropod Dinosaurs,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, Berkeley, 2002), pp. 31–61.

    Google Scholar 

  14. A. Cooper and R. Fortey, “Evolutionary Explosions and the Phylogenetic Fuse,” Trends Ecol. Evol. 13(1), 151–156 (1998).

    Google Scholar 

  15. P. J. Currie, “Theropods,” in The Complete Dinosaur, Ed. by J. O. Farlow and M. K. Brett-Surman (Indiana University Press, Bloomington, 1997), pp. 217–233.

    Google Scholar 

  16. P. J. Currie and X. Zhao, “A New Troodontid (Dinosauria, Theropoda) Braincase from the Dinosaur Park Formation (Campanian) of Alberta,” Can. J. Earth Sci. 30(10–11), 2231–2247 (1993).

    Google Scholar 

  17. S. A. Czerkas and Q. Ji, “A New Rhamphorhynchoid with a Head Crest and a Complex Integumentary Struture,” in Feathered Dinosaurs and the Origin of Flight, Ed. by S. J. Czerkas, Dinosaur Mus. J. 1, 15–412 (2002).

  18. S. A. Czerkas, D. Zhang, J. Li, and Y. Li, “Flying Dromeosaurs,” in Feathered Dinosaurs and the Origin of Flight, Ed. by S. J. Czerkas, Dinosaur Mus. J. 1, 97–126 (2002).

  19. L. Dingus and T. Rowe, The Mistaken Extinction: Dinosaur Evolution and the Origin of Birds (W.H. Freeman and Co., New York, 1997).

    Google Scholar 

  20. P. Dodson, “Origin of Birds: The Final Solution?,” Am. Zool. 40(4), 504–512 (2000).

    Google Scholar 

  21. P. Ellenberger, “Contribution la Classification des Pistes de Vertebres du Trias: les Types du Stromberg d’Afrique du Sud (II),” in Palaeovertebrata. Memoire Extraordinaire (1974).

  22. A. Elzanowski, “Birds in Cretaceous Ecosystems,” Acta Palaeontol. Polonica 28(1–2), 75–92 (1983).

    Google Scholar 

  23. A. Elzanowski, “Archaeopterygidae (Upper Jurassic of Germany),” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, Berkeley, 2002), pp. 129–159.

    Google Scholar 

  24. Feathered Dragons, Ed. by P. J. Currie, E. B. Koppelhus, M. A. Shugar, and J. L. Wright (Indiana University Press, Bloomington, 2004).

    Google Scholar 

  25. A. Feduccia, The Origin and Evolution of Birds (Yale University Press, New Haven, 1996).

    Google Scholar 

  26. A. Feduccia, The Origin and Evolution of Birds, 2nd ed. (Yale University Press, New Haven, 1999a).

    Google Scholar 

  27. A. Feduccia, “1.2.3 = 2.3.4: Accomodating the Cladogram,” Proc. Natl. Acad. Sci. USA 96, 4740–4742 (1999b).

    PubMed  CAS  Google Scholar 

  28. C. A. Forster, S. D. Sampson, L. M. Chiappe, and D. W. Krause, “The Theropod Ancestry of Birds: New Evidence from the Late Cretaceous of Madagascar, Science 279(5358), 1915–1919 (1998).

    PubMed  CAS  Google Scholar 

  29. J. Gauthier, “Saurischian Monophyly and the Origin of Birds,” in The Origin of Birds and the Evolution of Flight, Ed. by K. Padian (California Academy of Science, San-Francisco, 1986), pp. 1–55.

    Google Scholar 

  30. J. Gauthier, “New Perspectives on the Origin and Early Evolution of Birds,” in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History, Ed. by J. Gauthier and L. M. Gall (Yale University Press, New Haven, 2001).

    Google Scholar 

  31. J. Gauthier and K. de Queiroz, “Feathered Dinosaurs, Flying Dinosaurs, Crown Dinosaurs, and the Name ‘Aves’,” in New Perspectives on the Origin and Early Evolution of Birds, in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History (Yale University Press, New Haven, 2001), pp. 7–41.

    Google Scholar 

  32. K. Gegenbaur, “Vergleichend-anatomische Bemrekungen uber das Fusskelet der Vogel,” Mullers Arch. Anat., 450–472 (1803).

  33. K. Gegenbaur, “Beitrage zur Kenntnis des Beckens der Vogel,” Jen. Zeitschr. Nat., 157–220 (1870).

  34. G. Gierliński, “Avialian Theropod Tracks from the Early Jurassic Strata of Poland,” Zubia 14, 79–87 (1996a).

    Google Scholar 

  35. G. Gierliński, “Feather-Like Impressions in a Theropod Resting Trace from the Lower Jurassic of Massachusetts,” Ed. by M. Morales, The Continental Jurassic Bull. Mus. Northern Arizona, No. 60, 179–184 (1996b).

  36. G. Gierliński, “What Type of Feathers Could Nonavian Dinosaurs Have, According to an Early Jurassic Ichnological Evidence from Massachusetts?,” Przeglad Geologiczny 45(4), 419–422 (1997).

    Google Scholar 

  37. G. Heilmann, The Origin of Birds (H.F. & G. Witherby, London, 1926).

    Google Scholar 

  38. R. Hinchliffe, “One, Two, Three or Two, Three, Four. An Embryologist’s View of the Homologies of the Digits and Carpus of Modern Birds,” in The Beginnings of Birds, Ed. by M. Hecht et al. (Brunner und Daentler, Eichstatt, 1985), pp. 141–147.

    Google Scholar 

  39. R. Hinchcliffe, “A Developmental Viewpoint of the Bird Wing Skeleton and Its Homologies,” in Sixth International Meeting of the Society of Avian Paleontology and Evolution (Musee des Dinosaures, Esperaza, Quillan, France, 2004), p. 30.

    Google Scholar 

  40. N. Holmgren, “On the Origin of the Tetrapod Limb,” Acta Zool. 14(2–3), 185–295 (1933).

    Google Scholar 

  41. T. R. Holtz, “The Problem of Homoplasy in Reconstructing Theropod Phylogeny,” in New Perspectives on the Origin and Early Evolution of Birds, in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History, Ed. by J. Gauthier and L. M. Gall (Yale University Press, New Haven, 2001), pp. 99–122.

    Google Scholar 

  42. S. Hope, “The Mesozoic Radiation of Neornithes,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, Berkely, 2002), pp. 339–388.

    Google Scholar 

  43. L. Hou, Mesozoic Birds of China (Taiwan Fenghuang Bird Garden, Lugu, 1997).

    Google Scholar 

  44. L. Hou and Z. Liu, “A New Fossil Bird from Lower Cretaceous of Gansu and Early Evolution of Birds,” Sci. Sin., Ser. B 27, 1296–1302 (1987).

    Google Scholar 

  45. L. Hou, L. D. Martin, Z. Zhou, and A. Feduccia, “Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China,” Science 274(5290), 1164–1167 (1996).

    PubMed  CAS  Google Scholar 

  46. L. Hou, L. D. Martin, Z. Zhou, et al., “A Diapsid Skull in a New Species of the Primitive Bird Confuciusornis,” Nature, 399(6737), 679–682 (1999).

    CAS  Google Scholar 

  47. M. E. Howgate, “Archaeopteryx’s Morphology,” Nature 310(5973), 104 (1984).

    Google Scholar 

  48. T. H. Huxley, “On the Animals Which Are Most Intermediate between Birds and Reptiles,” Ann. Mag. Nat. Hist. 2(2), 66–75 (1868).

    Google Scholar 

  49. S. H. Hwang, M. A. Norell, Q. Ji, and K. Gao, “New Specimens of Microraptor zhaoianus (Theropoda: Dromeosauridae) from Northeastern China,” Am. Mus. Novitates, No. 3381, 44 (2002).

  50. A. A. Karhu and A. S. Rautian, “A New Family of Maniraptora (Dinosauria: Saurischia) from the Late Cretaceous of Mongolia,” Paleontol. Zh., No. 4, 85–94 (1996) [Paleontol. J., No. 5, 583–592 (1996)].

  51. M. Kundrát, “When Did Theropods Become Feathered? Evidence for Pre-Archaeopteryx Feathery Appendages,” J. Exp. Zool. Ser. B 302(4), 355–364 (2004).

    Google Scholar 

  52. M. Kundrát, V. Seichert, A. P. Russell, and K. Smetana, “Pendactyl Pattern of the Avian Wing Autopodium and Pyramid Reduction Hypothesis,” J. Exp. Zool. 294(1), 152–159 (2002).

    PubMed  Google Scholar 

  53. E. N. Kurochkin, “A New Order of Birds from the Lower Cretaceous of Mongolia,” Dokl. Akad. Nauk SSSR 262(2), 452–455 (1982).

    Google Scholar 

  54. E. N. Kurochkin, “Cretaceous Birds from Mongolia and Their Importance for Elaborating the Phylogeny of the Class Aves,” Tr. Sovm. Sov.-Mong. Paleontol. Ekspeditsii, No. 34, 33–42 (1988).

  55. E. N. Kurochkin, “Synopsis of Mesozoic Birds and Early Evolution of Class Aves,” Archaeopteryx 13, 47–66 (1995).

    Google Scholar 

  56. E. N. Kurochkin, A New Enantiornithid of the Mongolian Late Cretaceous, and a General Appraisal of the Infraclass Enanthiomithes (Aves) (Palaeontological Institute, Moscow, 1996), Special Issue.

    Google Scholar 

  57. E. N. Kurochkin, “New Ideas on the Origin and Early Evolution of Birds,” in Advances and Problems of Ornithology of Northern Eurasia at the Turn of Centuries, Ed. by E. N. Kurochkin and I. I. Rakhimov (Magarif, Kazan, 2001), pp. 68–96.

    Google Scholar 

  58. E. N. Kurochkin, “A Four-Winged Dinosaur and the Origin of Birds,” Priroda, No. 5, 3–12 (2004).

  59. M. G. Lockley, S. Y. Yang, M. Matsukawa, F. Fleming, and S. K. Lim, “The Track Record of Mesozoic Birds: Evidence and Implications,” Philos. Trans. R. Soc. London, Ser. B. 336(1277), 113–134 (1992).

    Google Scholar 

  60. P. R. Lowe, “An Analysis of the Characters of Archaeopteryx and Archaeornis. Were They Reptiles or Birds?,” Ibis 86, 517–543 (1944).

    Google Scholar 

  61. J. Lü, Z. Dong, Y. Azuma, R. Barsbold, and Y. Tomida, “Oviraptorosaurs Compared to Birds,” Ed. by Z. Zhou and F. Zhang, in Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, 2000 (Science Press, Beijing, 2002), pp. 175–190.

    Google Scholar 

  62. J. P. Magnol, C. Mourer-Chauviré, and F. Bernex, “L’origine des Oiseaux et la question de l’homologie des doigts de leur main: données contradictoires de la Systématique phylogénétique et de la Biologe du dévelopment,” Revue Med. Vet. 155(3), 187–196 (2004).

    Google Scholar 

  63. L. D. Martin, “The Origin and Early Radiation of Birds,” in Perspectives in Ornithology, Ed. by A. H. Brush and G. A. Clark, Jr. (University Press, Cambridge, 1983), pp. 291–338.

    Google Scholar 

  64. L. D. Martin, “A Basal Archosaurian Origin of Birds,” Acta Zool. Sin. 50(6), 978–990 (2004).

    Google Scholar 

  65. L. D. Martin and Z. Zhou, “Archaeopteryx-Like Skull in Enantiornithine Bird, Nature 389(6551), 556 (1997).

    CAS  Google Scholar 

  66. T. Maryańska and H. Osmólska, “The Quadrate of Oviraptorid Dinosaurs,” Acta Palaeontol. Polonica 42(3), 361–371 (1997).

    Google Scholar 

  67. T. Maryańska, H. Osmólska, and M. Wolsan, “Avialan Status for Oviraptorosauria,” Acta Palaeontol. Polonica 47(1), 97–116 (2002).

    Google Scholar 

  68. G. Mayr, S. Peters, G. Plodowski, and O. Vogel, “Bristle-Like Integumentary Structures at the Tail of the Horned Dinosaur Psittacosaurus,” Naturwissenschaften 89(8), 361–365 (2002).

    PubMed  CAS  Google Scholar 

  69. R. N. Melchor, S. Valis, and J. F. Genise, “Bird-Like Fossil Footprints from the Late Triassic, Nature 417(6892), 936–938 (2002).

    PubMed  CAS  Google Scholar 

  70. Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, Berkeley, 2002).

    Google Scholar 

  71. H. K. Mookerjee, “Cause of Formation of Heterocoelous Vertebra in Bird,” Curr. Sci., No. 8, 435–438 (1935).

    Google Scholar 

  72. G. B. Müller and P. Alberch, “Ontogeny of the Limb Skeleton in Alligator mississipensis Development Invariance and Change in the Evolution of Archosaur Limb,” J. Morphol. 203(2), 151–164 (1990).

    Google Scholar 

  73. M. A. Norell and P. J. Makovicky, “Important Features of the Dromeosaurid Skeleton. II: Information from the Newly Collected Specimen of Velociraptor mongoliensis,” Am. Mus. Novitates, No. 32282, 45 (1999).

  74. M. A. Norell, J. M. Clark, and P. J. Makovicky, “Phylogenetic Relationships among Coelurosaurian Theropods,” in New Perspectives on the Origin and Early Evolution of Birds, in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History (Yale University Press, New Haven, 2001), pp. 49–67.

    Google Scholar 

  75. L. I. Novitskaya, “On Specific Features of Contemporary Phylogenetic Research (An Example of the Problem Concerning the Origin of Gnathostomes),” Paleontol. Zh., No. 6, 3–14 (2002) [Paleontol. Zh., No. 6, 569–580 (2002)].

  76. J. H. Ostrom, “Archaeopteryx and the Origin of Birds,” Biol. J. Linn. Soc. 8(1), 91–182 (1976).

    Google Scholar 

  77. R. Owen, On the Nature of Limbs (Van Voor, London, 1849).

    Google Scholar 

  78. K. Padian, “The False Issues of Bird Origins: An Historiographic Perspective,” in New Perspectives on the Origin and Early Evolution of Birds, Ed. by J. Gauthier and L. M. Gall, in Proceedings of the International Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History (Yale University Press, New Haven, 2001), pp. 485–499.

    Google Scholar 

  79. K. Padian and L. Chiappe, “The Origin and Early Evolution of Birds,” Biol. Rev. Cambridge Philos. Soc. 73, 385–398 (1998).

    Google Scholar 

  80. W. K. Parker, “On the Structure and Development of the Wing of the Common Fowl,” Philos. Trans. R. Soc. London 13, Part 2, (1), 43–85 (1888).

    Google Scholar 

  81. G. S. Paul, Predatory Dinosaurs of the World (New York Academy of Sciences, New York, 1988).

    Google Scholar 

  82. G. S. Paul, Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds (John Hopkins University Press, Baltimore, 2002).

    Google Scholar 

  83. A. Perle, M. A. Norell, L. M. Chiappe, and J. M. Clark, “Flightless Bird from the Cretaceous of Mongolia, Nature 362(6421), 623–626 (1993).

    Google Scholar 

  84. D. S. Peters and Q. Ji, “The Diapsid Temporal Construction of the Chinese Fossil Bird Confuciusornis,” Senckenbergiana lethaea 78(1/2), 153–155 (1998).

    Google Scholar 

  85. A. G. Ponomarenko, “Paleontological Data on the Origin of Arthropods,” in Evolutionary Factors of the Formation of Animal Life Diversity, Ed. by E. I. Vorobyeva and B. R. Striganova (T-vo Nauchnykh Izdanii KMK, Moscow, 2005), pp. 146–155.

    Google Scholar 

  86. A. S. Rautian, “Preface. On the Principles of the Theory of Evolution of Multispecies Communities (Phylocenogenesis) and Its Author,” in Selected Studies in Paleoecology and Phylocenogenetics, Ed. by V. V. Zherikhin (T-vo Nauchnykh Izdanii KMK, Moscow, 2003), pp. 1–42.

    Google Scholar 

  87. A. L. Romanoff, The Avian Embryo (Macmillan Company, New York, 1960).

    Google Scholar 

  88. J. A. Ruben, “Reptilian Physiology and the Flight Capacity of Archaeopteryx,” Evolution 45(1), 1–17 (1991).

    Google Scholar 

  89. J. A. Ruben, T. D. Jones, N. R. Geist, and W. J. Hillenius, “Lung Structure and Ventilation in Theropod Dinosaurs and Early Birds,” Science 278(5341), 1267–1270 (1997).

    CAS  Google Scholar 

  90. G. S. Schestakowa, “Die Entwicklung des Vögelflügels,” Byull. Mosk. O-va Ispyt. Prir., Nov. Ser. 36(1–2), 164–210 (1927).

    Google Scholar 

  91. I. I. Schmalhausen and Yu. A. Stepanova, “Development of the Forelimb in Birds in Connection with Its Origin,” in Proceedings of the 2nd Congress of Zoologists, Anatomists, and Histologists (Glavnauka, Moscow, 1927), pp. 135–136.

    Google Scholar 

  92. P. Senter, R. Barsbold, B. B. Britt, and D. A. Burnham, “Systematics and Evolution of Dromeosauridae (Dinosauria, Theropoda),” Bull. Gumma Mus. Nat. Hist. 8(1), 1–20 (2004).

    Google Scholar 

  93. P. Shipman, Taking Wing: Archaeopteryx and the Evolution of Bird Flight (Simon and Schuster, New York, 1998).

    Google Scholar 

  94. L. P. Tatarinov, L.P., The Morphological Evolution of Theriodonts and General Problems in Phylogenetics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  95. L. P. Tatarinov, “The Nasal Cavity, Maxillary Sensory System, and Certain Features of the Brain of the Ictidosuchoidea (Reptilia, Theriodontia),” Paleontol. Zh., No. 1, 101–113 (1999) [Paleontol. J., No. 1, 99–110 (1999)].

  96. E. I. Vorobyeva, The Problem of Origin of Terrestrial Vertebrates (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  97. E. I. Vorobyeva, “A New Approach to the Problem of Tetrapod Origin,” Paleontol. Zh., No. 5, 3–14 (2003) [Paleontol. J., No. 5, 449–460 (2003)].

  98. G. P. Wagner and J. A. Gauthier, “1.2,3 = 2.3,4: A Solution to the Problem of the Homology of the Digits in the Avian Hand,” Proc. Natl. Acad. Sci. 96(9), 5111–5116 (1999).

    PubMed  CAS  Google Scholar 

  99. X. Wang, Z. Zhou, F. Zhang, and X. Xu, “A Nearly Completely Articulated Rhamphorhynchoid Pterosaur with Exceptionally Well-Preserved Wing Membranes and Hairs from Inner Mongolia, Northeast China,” China Sci. Bull. 47(3), 226–230 (2002).

    Google Scholar 

  100. R. E. Weems and P. G. Kimmel, “Upper Triassic Reptile Footprints and a Coelacanth Fish Scale from the Culpeper Basin, Virginia,” Proc. Biol. Soc. Washington 106(2), 390–401 (1993).

    Google Scholar 

  101. P. Wellnhofer, “A New Specimen of Archaeopteryx from the Solnhofen Limestone,” Sci. Ser. Nat. Hist. Mus. Los Angeles Co. 36, 3–23 (1992).

    Google Scholar 

  102. P. Wellnhofer, “New Data on the Origin and Early Evolution of Birds,” C. R. Acad. Sci. Paris, Ser. 2 19, 299–308 (1994).

    Google Scholar 

  103. L. M. Witmer, “The Role of Protoavis in the Debate on Avian Origins,” in New Perspectives on the Origin and Early Evolution of Birds, in Proceedings of the Int.emational Symposium in Honor of John H. Ostrom. A Special Publication of the Peabody Museum of Natural History (Yale University Press, New Haven, 2001), pp. 537–548.

    Google Scholar 

  104. L. M. Witmer, “The Debate on Avian Ancestry,” in Mesozoic Birds, Ed. by L. M. Chiappe and L. M. Witmer (University of California Press, New Haven, 2002), pp. 3–30.

    Google Scholar 

  105. X. Xu and F. Zhang, “A New Maniraptoran Dinosaur from China with Long Feathers on the Metatarsus,” Naturwissenschaften 92(4), 173–177 (2005).

    PubMed  CAS  Google Scholar 

  106. X. Xu, Z. Zhao, and J. M. Clark, “A New Therizinosaur from the Lower Jurassic Lower Lufeng Formation of Yunnan, China,” J. Vertebrate Paleontol. 21(3), 477–483 (2001).

    Google Scholar 

  107. X. Xu, M. A. Norell, X.-L. Wang, et al., “A Basal Troodontid from the Early Cretaceous of China,” Nature 415(6873), 780–784 (2002).

    PubMed  CAS  Google Scholar 

  108. X. Xu, Y. Cheng, X. Wang, and C. Chang, “Pygostyle-Like Structure from Beipiaosaurus (Theropoda, Therizinosauroidea) from the Lower Cretaceous Yixian Formation of Liaoning, China,” Acta Geol. Sin. 77(3), 294–298 (2003a).

    Google Scholar 

  109. X. Xu, Z. Zhou, X. Wang, et al., “Fourwinged Dinosaurs from China,” Nature 21(6921), 335–340 (2003b).

    CAS  Google Scholar 

  110. X. Xu, M. A. Norell, X. Kuang, et al., “Basal Tyrannosauroids from China and Evidence for Protofeathers in Tyrannosauroids, Nature 431(7009), 680–684 (2004).

    PubMed  CAS  Google Scholar 

  111. F. Zhang and Z. Zhou, “Leg Feathers in an Early Cretaceous Bird,” Nature 431(7011), 925 (2004a).

    PubMed  CAS  Google Scholar 

  112. F. Zhang and Z. Zhou, “Leg Feathers in Early Birds and Their Implications,” in Abstracts of Papers, Sixth International Meeting of the Society of Avian Paleontology and Evolution (Musee des Dinosaures, Esperaza, France, Quillan, France, 2004b), p. 63.

    Google Scholar 

  113. F. Zhang, L. Hou, and L. Quyang, “Osteological Microstructure of Confuciusornis: Preliminary Report,” Vertebrata PalAsiatica 36(2), 126–135 (1998).

    Google Scholar 

  114. Z. Zhou, “The Origin and Early Evolution of Birds: Discoveries, Disputes, and Perspectives from Fossil Evidence,” Naturwissenschaften 91(9), 455–471 (2004).

    PubMed  CAS  Google Scholar 

  115. Z. Zhou, and L. Hou, “Confuciusornis and the Early Evolution of Birds,” Vertebrata PalAsiatica 36(2), 136–146 (1998).

    Google Scholar 

  116. Z. Zhou and F. Zhang, “Jeholomis Compared to Archaeopteryx, with a New Understanding of the Earliest Avian Evolution,” Naturwissenschaften 90(5), 220–225 (2003).

    PubMed  CAS  Google Scholar 

  117. Z. Zhou and F. Zhang, “Mesozoic Birds of China: An Introduction and Review, Acta Zool. Sin. 50(4), 913–920 (2004).

    Google Scholar 

  118. Z. Zhou, P. M. Barrett, and J. Hitton, “An Exceptionally Preserved Lower Cretaceous Ecosystem,” Nature 421(6925), 807–814 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.N. Kurochkin, 2006, published in Zoologicheskii Zhurnal, 2006, Vol. 85, no. 3, pp. 283–297.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurochkin, E.N. Parallel evolution of theropod dinosaurs and birds. Entmol. Rev. 86 (Suppl 1), S45–S58 (2006). https://doi.org/10.1134/S0013873806100046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873806100046

Keywords

Navigation