Skip to main content
Log in

Centers of marine fauna redistribution

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The concepts of centers of biota origin and centers of biota accumulation are usually regarded as mutually exclusive. In this paper, they are analyzed within the framework of a unified concept of centers of biota redistribution. Such a center is a biogeographic unit that has three developmental stages: accumulation, diversification, and dispersal. At the accumulation stage, the taxonomic capacity of the corresponding biogeographic district drastically increases and its species richness becomes higher owing to in-migration of species from other regions. At the diversification stage, the species richness continues to increase owing to speciation, and a unified succession system develops. At the dispersal stage, the biotic boundaries of the region act as efficient barriers to species invasion, and the species of the redistribution center gain an advantage over the species of adjacent regions when colonizing new habitats. In the Neogene, the main shallow-water centers of marine fauna redistribution were located in the Indo-Malayan triangle, the western Atlantic, and the northern Pacific. The role of redistribution centers in deep-ocean areas belonged to the Antarctic and the western Pacific. The possibility of using an ecosystem approach to the study of redistribution centers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Adams, “Southeastern United States As a Center of Geographical Distribution of Flora and Fauna,” Biol. Bull. 3, 115–131 (1902).

    Google Scholar 

  2. G. R. Allen, Damselfishes of the South Seas (T.F.H. Publ. Inc., Neptune City, New Jersey, 1975).

    Google Scholar 

  3. A. P. Andriyashev, An Essay on Zoogeography and Origin of the Fish Fauna of the Bering Sea and Adjacent Water Areas (Leningr. Gos. Univ., Leningrad, 1939) [in Russian].

    Google Scholar 

  4. A. P. Andriyashev, “Liparids (Liparidae, Scorpaeniformes) from the Southern Ocean and Adjacent Water Areas,” Issled. Fauny Morei 53(61), 1–478 (2003).

    Google Scholar 

  5. Arntz, W.E., Gutt, J., and Klages, M., “Antarctic Marine Biodiversity: An Overview,” in Antarctic Communities: Species, Structure and Survival, Ed. by B. Battaglia et al. (Cambridge University Press, Cambridge, 1997), pp. 3–14.

    Google Scholar 

  6. K. V. Beklemishev, The Ecology and Biogeography of the Pelagic Zone (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  7. G. M. Belyaev, “New Species of Sea Cucumbers of the Genus Elpidia from the Southern Part of the Atlantic Ocean,” Tr. Inst. Okeanol. Akad. Nauk SSSR 103, 259–280 (1975).

    Google Scholar 

  8. G. M. Belyaev, “Pathways of Deep-Water Fauna Formation,” in The Biology of the Ocean. I. The Biological Structure of the Ocean, Ed. by M. E. Vinogradov (Nauka, Moscow, 1977), pp. 205–218 [in Russian].

    Google Scholar 

  9. J. C. Briggs, Marine Zoogeography (McGraw-Hill Book Co., New York, 1974).

    Google Scholar 

  10. J. C. Briggs, Centres of Origin in Biogeography. Biogeographical Monographs 1. (Leeds: University of Leeds, Leeds, 1984).

    Google Scholar 

  11. J. C. Briggs, “The Marine East Indies: Centre of Origin?,” Global Ecol. Biogeogr. Lett. 2 149–156 (1992).

    Article  Google Scholar 

  12. J. C. Briggs, Global Biogeography (Elsevier, Amsterdam, 1995).

    Google Scholar 

  13. J. C. Briggs, “Extinction and Replacement in the Indo-West Pacific Ocean,” J. Biogeogr. 26(4), 777–783 (1999).

    Article  Google Scholar 

  14. J. C. Briggs, “Centrifugal Speciation and Centers of Origin,” J. Biogeogr. 27(5), 1183–1188 (2000).

    Article  Google Scholar 

  15. J. C. Briggs, “Marine Centres of Origin as Evolutionary Engines,” J. Biogeogr. 30(1), 1–18 (2003).

    Article  Google Scholar 

  16. J. C. Briggs, “Older Species: A Rejuvenation on Coral Reefs?,” J. Biogeogr. 30(4), 525–530 (2004).

    Google Scholar 

  17. J. H. Brown, “Macroecology: Progress and Prospect,” Oikos 87, 3–13 (1999).

    Google Scholar 

  18. W. J. Brown, Jr., “Centrifugal Speciation,” Quart. Rev. Biol. 32, 247–277 (1957).

    Article  Google Scholar 

  19. W. J. Brown, Jr., “Punctuation Equilibrium Excused: The Original Examples Fail to Support It,” Biol. J. Linn. Soc. 31, 383–404 (1987).

    Google Scholar 

  20. G.-L. L. Buffon, de, “Histoire naturelle, generale et particuliere, etc. Supplement” (De l’Imprerimerie Royale, Paris, 1776), Vol. 3.

    Google Scholar 

  21. F. A. Chace and R. B. Manning, “Two New Caridean Shrimps, One Representing a New Family, from Marine Pools on Ascension Island (Crustacea: Decapoda: Natantia),” Smiths. Contr. Zool. 131, 1–18 (1972).

    Google Scholar 

  22. S. S. Creasey and A. D. Rogers, “Population Genetics of Bathyal and Abyssal Organisms,” Adv. Mar. Biol. 35, 1–151 (1999).

    Google Scholar 

  23. J. V. Crisci, “The Voice of Historical Biogeography,” J. Biogeogr. 28(2), 157–168 (2001).

    Article  Google Scholar 

  24. L. Croizat, Panbiogegraphy (Caracas, 1958).

  25. L. Croizat, G. Nelson, and D. E. Rosen, “Centers of Origin and Related Concepts,” Syst. Zool. 23, 265–287 (1974).

    Article  Google Scholar 

  26. A. L. Dahl, “Regional Ecosystems Survey of the South Pacific Area,” South Pac. Comm. Tech. Pap. 179, 1–99 (1980).

    Google Scholar 

  27. J. D. Dana, “On the Origin of the Geographical Distribution of Crustacea,” Ann. Mag. Nat. Hist., Ser. 2 17, 42–51 (1856).

    Google Scholar 

  28. P. J. Darlington, Zoogeography. The Geographic Distribution of Animals (Wiley, New York, 1957).

    Google Scholar 

  29. C. Darwin, On the Origin of Species by Means of Natural Selections or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

    Google Scholar 

  30. C. De Broyer and K. Jazdzewski, “Biodiversity of the Southern Ocean: Towards a New Synthesis for the Amphipoda (Crustacea),” Boll. Mus. Civico Storia Nat. Verona 20(2), 547–568 (1996).

    Google Scholar 

  31. G. De Lattin, Grundriss der Zoogeographie (Veb Gustav Fisher Verlag, Jena, 1967).

    Google Scholar 

  32. J. W. Durham and F. S. MacNeil, “Cenozoic Migrations of Marine Invertebrates through the Bering Strait Region,” in The Bering Land Bridge, Ed. by D. M. Hopkins (Stanford University Press, Stanford, California, 1967), pp. 326–349.

    Google Scholar 

  33. A. M. D’yakonov, “Interrelations of the Arctic and Pacific Marine Faunas According to Results of Zoogeographic Analysis of Echinoderms,” Zh. Obshch. Biol. 6(2), 125–155 (1945).

    Google Scholar 

  34. A. M. D’yakonov, “The Echinoderm Fauna of the Malay Archipelago and Its Relation to the Past and Future of the World Ocean,” Tr. Leningr. O-va Ispyt. Prir. 70(4), 109–126 (1950).

    Google Scholar 

  35. S. Ekman, Tiergeographie des Meeres (Akademische Verlagsgesellschaft, Leipzig, 1935).

    Google Scholar 

  36. B. J. Enguist, G. B. West, E. L. Charnov, and J. H. Brown, “Allometric Scaling of Production and Life-History Variation in Vascular Plants,” Nature 401, 907–911 (1999).

    Article  CAS  Google Scholar 

  37. Fishes of the Southern Ocean, Ed. by O. Gon and P. C. Heemstra (J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990).

    Google Scholar 

  38. J. C. Gage and D. S. M. Billett, “The Family Myriotrochidae Theel (Echinodermata: Holothurioidea) in the Deep Northeast Atlantic Ocean,” Zool. J. Linn. Soc. 88, 229–276 (1986).

    Google Scholar 

  39. A. V. Gebruk, Deep-Water Sea Cucumbers of the Family Elpidiidae (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  40. A. V. Gebruk, “Two Main Stages in Evolution of the Deep-Sea Fauna of Elasipodid Holothurians,” in Echinoderms through Time, Ed. by B. David et al. (Balkema, Rotterdam, 1994), pp. 507–514.

    Google Scholar 

  41. R. Y. George and R. J. Menzies, “Distribution and Probable Origin of the Species in the Deep-Sea Isopod Storthyngura,” Crustaceana 15(2), 171–187 (1968).

    Article  Google Scholar 

  42. J. Ghiold and A. Hoffman, “Biogeography and Biogeographic History of Clypeasteroid Echinoids,” J. Biogeogr. 13(3), 183–206 (1986).

    Article  Google Scholar 

  43. Yu. B. Gladenkov, The Marine Upper Cenozoic of Northern Regions (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  44. A. Yu. Gladenkov, A. E. Oleinik, L. Marinkovich, and B. B. Barinov, “A Refined Age for the Earliest Opening of Bering Strait,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 321–328 (2002).

    Article  Google Scholar 

  45. S. Gofas and A. Beu, “Tonnoidean Gastropods of the North Atlantic Seamounts and the Azores,” Am. Malacol. Bull. 17(1/2), 91–1 (2002).

    Google Scholar 

  46. A. N. Golikov, Buccinidae Mollusks of the World Ocean, Fauna of the Soviet Union, New Series (Nauka, Leningrad, 1980), Issue 121 [in Russian].

    Google Scholar 

  47. A. F. Gur’yanova, Scuds (Amphipoda) of Soviet Seas and Neiboring Water Areas. Identification Keys to the Fauna of the Soviet Union, Issue 41 (Nauka, Leningrad, 1951) [in Russian].

    Google Scholar 

  48. R. Hall, “The Plate Tectonic of Cenozoic SE Asia and the Distribution of Land and Sea,” in Biogeography and Geological Evolution of SE Asia, Ed. by R. Hall and J. D. Holloway (Backhuys Publisher, Leiden, 1998), pp. 99–131.

    Google Scholar 

  49. K. L. Heck and E. D. McCoy, “Biogeography of the Seagrasses: Evidence from Associated Organisms,” in Proceedings of the Ist International Symposium on Marine Biogeographical Evolution of the Southern Hemisphere (1979), Vol. 1, pp. 109–127.

    Google Scholar 

  50. C. Hedley, “A Zoogeographic Scheme for the Mid-Pacific,” Proc. Linn. Soc. N.S.W. 24, 391–423 (1899).

    Google Scholar 

  51. R. R. Hessler and D. Thistle, “On the Place of Origin of Deep-Sea Isopods,” Mar. Biol. 32, 155–165 (1975).

    Article  Google Scholar 

  52. L. B. Holthuis, “Caridean Shrimps Found in Land-Locked Saltwater Pools at Four Indo-West Pacific Localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the Description of One New Genus and Four New Species,” Zool. Verhandelinger 128, 1–48 (1973).

    Google Scholar 

  53. C. L. Hubbs, “Initial Discoveries of Fish Fauna on Seamounts and Offshore Banks in the Eastern Pacific,” Pacific Sci. 13, 311–316 (1959).

    Google Scholar 

  54. P. Jokiel and F. J. Martinelli, “The Vortex Model of Coral Reef Biogeography,” J. Biogeogr. 19, 449–458 (1992).

    Article  Google Scholar 

  55. A. I. Kafanov, “On the Centers of Origin and Some Features of the Ecological Evolution of Cold-Water Marine Malacofaunas of the Northern Hemisphere,” Biol. Morya 1, 3–9 (1978).

    Google Scholar 

  56. A. I. Kafanov, “The Cenozoic History of Malacofaunas on the Northern Pacific Shelf,” in Marine Biogeography: Subject, Methods, and Principles of Zoning, Ed. by O. G. Kusakin (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  57. A. I. Kafanov, “Neogene Macoma (Bivalvia, Tellinidae) Migration from the Pacific to the Atlantic through the Bering Strait: Taxonomic and Biogeographic Remarks,” Bul. Della Soc. Paleontol. Italiana 8, 77–85 (1999).

    Google Scholar 

  58. A. I. Kafanov, “Cenozoic Papyridea (Bivalvia, Cardiidae) and the Problem of Diversification of the Epicontinental Tropical Marine Biotas,” Bull. Russ. Far East Malacol. Soc. 5, 5–38 (2001).

    Google Scholar 

  59. E. A. Kay, “The Cypraeidae of the Indo-Pacific: Cenozoic Fossil History and Biogeography,” Bull. Mar. Sci. 47, 23–34 (1990).

    Google Scholar 

  60. G. A. Knox, The Biology of the Southern Ocean (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  61. A. J. Kohn, “Marine Biogeography and Evolution in the Tropical Pacific: Zoological Perspectives,” Bull. Mar. Sci. 33(3), 528–535 (1983).

    Google Scholar 

  62. O. G. Kussakin, “Peculiarities of the Geographical and Vertical Distribution of Marine Isopods and the Problem of Deep-Sea Fauna Origin,” Mar. Biol. 23, 19–34 (1973).

    Article  Google Scholar 

  63. O. G. Kussakin, Marine and Brackish-Water Isopods of Cold and Temperate Waters of the Northern Hemisphere. I. Suborder Flabellifera. Identification Keys to the Fauna of the Soviet Union (1979), Issue 122 [in Russian].

  64. H. S. Ladd, “Origin of the Pacific Island Molluscan Fauna,” Am. J. Sci., Ser. A 258, 201–210 (1960).

    Google Scholar 

  65. T.-Y. Lee and L. A. Lawver, “Cenozoic Plate Reconstruction of Southeast Asia,” Tectonophysics 255, 85–138 (1995).

    Article  Google Scholar 

  66. H. A. Lession, B. D. Kessing, and J. S. Pearse, “Population Structure and Speciation in Tropical Seas: Global Phylogeography of the Sea Urchin Diadema,” Evolution 55(5), 955–975 (2001).

    Article  Google Scholar 

  67. C. Linnaeus, Oratio de Telluris habitabilis incremento. Amoenitates cademicae (Upsala, 1791 (1743)), Vol. 5, pp. 430–459.

    Google Scholar 

  68. Ch. Lyell, Principles of Geology, or the Modern Changes of the Earth and Its Inhabitants Considered As Illustrative of Geology, 3 Vols. (J. Murray, London, 1830, 1832, 1833).

    Google Scholar 

  69. E. D. McCoy and K. L. Heck, “Biogeography of Corals, Seagrasses and Mangroves: An Alternative to the Centre of Origin Concept,” Syst. Zool. 25, 201–210 (1976).

    Article  Google Scholar 

  70. R. J. Menzies, R. Y. George, and G. T. Rowe, Abyssal Environment and Ecology of the World Ocean (Wiley, New York, 1973).

    Google Scholar 

  71. R. G. Miller, A History and Atlas of the Fishes of the Arctic Ocean (Foresta Institute, Carson City, Nevada, 1993).

    Google Scholar 

  72. A. N. Mironov, “Mode of Life of Pourtalesiid Sea Urchins (Echinoidea: Pourtalesiidae),” Tr. Inst. Okeanol. Akad. Nauk SSSR 103, 281–288 (1975).

    Google Scholar 

  73. A. N. Mironov, “Specific Features of Recent Distribution of Sea Urchin Families Differing in Geologic Age,” Okeanologiya 17(1), 153–157 (1977).

    Google Scholar 

  74. A. N. Mironov, “Two Pathways of Formation of the Deep-Water Sea Urchin Fauna,” Okeanologiya 20(4), 719–724 (1980).

    Google Scholar 

  75. A. N. Mironov, “The Role of the Antarctic Region in the Formation of the Deep-Water Fauna of the World Ocean,” Okeanologiya 22(3), 486–491 (1982).

    Google Scholar 

  76. A. N. Mironov, “The Accumulative Effect in the Distribution of Sea Urchins,” Zool. Zh. 626(8), 1202–1208 (1983).

    Google Scholar 

  77. A. N. Mironov, “The Role of Dispersal in the Formation of Recent Sea Urchin Faunistic Complexes in the Tropical Zone,” Okeanologiya 25(2), 301–307 (1985a).

    Google Scholar 

  78. A. N. Mironov, “On the Age of the Deep-Water Benthic Fauna of Antarctic Origin,” Tr. Zool. Inst. Akad. Nauk SSSR 130, 82–87 (1985b).

    Google Scholar 

  79. A. N. Mironov, “A Faunistic Approach to the Study of Recent Ecosystems,” Okeanologiya 30(6), 1006–1012 (1990).

    Google Scholar 

  80. A. N. Mironov, “Deep-Water Sea Urchins (Echinodermata: Echinoidea) from the Southern Part of the Atlantic Ocean,” Tr. Inst. Okeanol. 127, 218–227 (1993).

    Google Scholar 

  81. A. N. Mironov, “Bottom Faunistic Complexes of Oceanic Islands and Seamounts,” Tr. Inst. Okeanol. 129, 7–16 (1994).

    Google Scholar 

  82. A. N. Mironov, “Problems of ‘Pure’ Biogeography and Discrimination of Biotic and Biocenotic Approaches,” Zh. Obshch. Biol. 60(2), 13–28 (1999).

    Google Scholar 

  83. A. N. Mironov, “Adaptations and Barriers to Species Dispersal,” in Adaptational Aspects of Marine Fauna Formation, Ed. by A. P. Kuznetsov and O. N. Zezina (VNIRO, Moscow, 2002), pp. 95–111.

    Google Scholar 

  84. A. N. Mironov, “The Nature of Biotic Boundaries,” in General Problems in Marine Biogeography: in Memory of Academician O.G. Kusakin, Ed. by A. I. Kafanov (Nauka, Vladivostok, 2004), pp. 67–97.

    Google Scholar 

  85. A. N. Mironov, A. V. Gebruk, and L. I. Moskalev, “Geography of Hydrothermal Communities and Obligate Hydrothermal Taxa,” in Biology of Hydrothermal Ecosystems, Ed. by A. Gebruk (KMK Scientific Press Ltd., Moscow, 2002), pp. 410–455.

    Google Scholar 

  86. C. Mora, P. M. Chittaro, P. F. Sale, J. P. Kritzler, and S. A. Ludsin, “Patterns and Processes in Reef Fish Diversity,” Nature 421, 933–936 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. R. F. Myers, Micronesian Reef Fishes, 3rd ed. (Coral Graphics, Barrigada, Guam, 1999).

    Google Scholar 

  88. E. B. Naimark, Doctoral Dissertation in Biology (Paleontologicheskii In-t RAN, Moscow, 2001a).

    Google Scholar 

  89. E. B. Naimark, “Change of Taxonomic Structure in Diversification Centers,” in Ecosystem Rearrangements and Evolution of the Biosphere (Izd. Paleontologicheskogo Instituta, Moscow, 2001b), Issue 4, pp. 78–86.

    Google Scholar 

  90. G. Nelson and N. I. Platnick, Systematics and Biogeography: Cladistics and Vicariance (Columbia University Press, New York, 1981).

    Google Scholar 

  91. K. N. Nesis, “Pathways and Period of Disrupted Range Formation in Amphiboreal Species of Marine Benthic Animals,” Okeanologiya 1(5), 893–903 (1961).

    Google Scholar 

  92. K. N. Nesis, “Zoogeography of the World Ocean: Comparison of Pelagial Zonality and Regional Division of the Shelf,” in Marine Biogeography. Subject, Methods, and Principles of Zoning, Ed. by O. G. Kusakin (Nauka, Moscow, 1982), pp. 114–134.

    Google Scholar 

  93. W. A. Newman, “Origin of the Hawaiian Marine Fauna: Dispersal and Vicariance As Indicated by Barnacles and Other Organisms,” in Crustacean Biogeography, Ed. by R. H. Gore and K. Heck (A.A. Balkema, Rotterdam, 1986), pp. 21–49.

    Google Scholar 

  94. D. O’Foighil, R. Jennings, J.-K. Park, and D. A. Merriwether, “Phylogenetic Relationships of Mid-Oceanic Ridge and Continental Lineages of Lassaea spp. (Mollusca: Bivalvia) in the Northeastern Atlantic,” Mar. Ecol. Progr. Ser. 213, 165–175 (2001).

    Google Scholar 

  95. A. S. Rautian and V. V. Zherikhin, “Models of Phylocenogenesis and Lessons from Ecological Crises of the Geologic Past,” Zh. Obshch. Biol. 58(4), 20–47 (1997).

    Google Scholar 

  96. S. M. Razumovskii, “On the Origin and Age of Tropical and Laurel-Leaved Floras,” Byull. Glavn. Bot. Sada Akad. Nauk SSSR 82, 43–51 (1971).

    Google Scholar 

  97. S. M. Razumovskii, Selected Works (KMK Scientific Press Ltd., Moscow, 1999) [in Russian].

    Google Scholar 

  98. D. E. Rosen, “A Vicariance Model of Caribbean Biogeography,” Syst. Zool. 24(4), 431–464 (1975).

    Article  Google Scholar 

  99. D. E. Rosen, “Vicariant Patterns and Historical Explanation in Biogeography,” Syst. Zool. 27(2), 159–188 (1978).

    Article  Google Scholar 

  100. B. R. Rosen, “Coral Reef Biogeography and Climate in Late Cenozoic: Just Islands in the Sun or a Critical Pattern of Islands?,” in Fossils and Climate, Ed. by P. Brenchley (Wiley, Chichester, 1984), pp. 201–260.

    Google Scholar 

  101. F. Santini and R. Winterbottom, “Historical Biogeography of the Indo-Western Pacific Coral Reef Biota: Is the Indonesian Region a Centre of Origin?,” J. Biogeogr. 29, 189–205 (2002).

    Article  Google Scholar 

  102. V. G. Springer, “Pacific Plate Biogeography, with Special Reference to Shorefishes,” Smiths. Contrib. Zool. 367, 1–182 (1982).

    Google Scholar 

  103. F. G. Stehli and J. W. Wells, “Diversity and Age Patterns in Hermatypic Corals,” Syst. Zool. 20, 115–126 (1971).

    Article  Google Scholar 

  104. D. R. Stoddart, “Biogeography of the Tropical Pacific,” Pacific Sci. 46(2), 276–293 (1992).

    Google Scholar 

  105. H. Termier and G. Termier, “La notion de migration en pale’ontologie,” Geol. Rdsch. 45(1), 26–42 (1956).

    Article  Google Scholar 

  106. E. Tjorve, “Habitat Size and Number in Multi-Habitat Landscapes: A Model Approach Based on Species-Area Curves,” Ecography 25, 17–24 (2002).

    Article  Google Scholar 

  107. K. A. Triantis, M. Mylonas, K. Lika, and K. Vardinoyannis, “A Model for the Species-Area-Habitat Relationship,” J. Biogeogr. 30(1), 19–27 (2003).

    Article  Google Scholar 

  108. M. D. F. Udwardy, Dynamic Zoogeography (Van Nostrand Reinhold Co., New York, 1969).

    Google Scholar 

  109. J. W. Valentine, “Neogene Marine Climate Trends: Implications for Biogeography and Evolution of the Shallow-Sea Biota,” Geology 12(11), 647–650 (1984).

    Article  Google Scholar 

  110. G. J. Vermeij, “Anatomy of an Invasion: The Trans-Arctic Interchange,” Paleobiology 17, 281–307 (1991).

    Google Scholar 

  111. G. J. Vermeij and G. Rosenberg, “Giving and Receiving: The Tropical Atlantic As a Donor and Recipient Region for Invading Species,” Am. Malacol. Bull. 10(2), 181–194 (1993).

    Google Scholar 

  112. J. E. N. Veron, Corals in Space and Time: The Biogeography and Evolution of the Scleractinia (UNSW Press, Sydney, 1995).

    Google Scholar 

  113. H. K. Voris, “Maps of Pleistocene Sea Levels in Southern Asia: Shorelines, River System and Time Durations,” J. Biogeogr. 27, 1153–1167 (2000).

    Article  Google Scholar 

  114. R. C. Vrijenhoek, “Gene Flow and Genetic Diversity in Naturally Fragmented Metapopulations of Deep-Sea Hydrothermal Vent Animals,” J. Heredity 88(4), 285–293 (1997).

    CAS  Google Scholar 

  115. J. P. Wares, “Biogeography of Asterias: North Atlantic Climate Change and Speciation,” Biol. Bull. 201, 95–103 (2001).

    PubMed  CAS  Google Scholar 

  116. R. Whatley, “The Southern End of Tethys: An Important Locus for the Origin and Evolution of Both Deep and Shallow Water Ostracoda,” in Shallow Tethys 2, Ed. by K. G. McKenzie (A.A. Balkema, Rotterdam, 1987), pp. 461–474.

    Google Scholar 

  117. E. O. Wiley, “Vicariance Biogeography,” Ann. Rev. Ecol. Syst. 19, 513–542 (1988).

    Article  Google Scholar 

  118. R. J. Whittaker, K. J. Willis, and R. Field, “Scale and Species Richness: Towards a General, Hierarchical Theory of Species Diversity,” J. Biogeogr. 28(4), 453–470 (2001).

    Article  Google Scholar 

  119. T. Wolff, “The Hadal Community: An Introduction,” Deep-Sea Res. 6, 95–124 (1960).

    Article  Google Scholar 

  120. D. L. Woodland, “Zoogeography of the Siganidae (Pisces): An Interpretation of Distribution and Richness Patterns,” Bull. Mar. Sci. 33, 713–717 (1983).

    Google Scholar 

  121. V. V. Zherikhin, Development and Change of Cretaceous and Cenozoic Faunistic Complexes (Tracheata and Chelicerata) (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  122. V. V. Zherikhin, “Phylogenesis and Phylocoenogenesis,” in Evolution of the Biosphere. Records of the Queen Victoria Museum and Art Gallery, Ed. by A. Yu. Rosanov et al. (Queen Victoria Museum and Art Gallery Publ., Launceston., 1997), Vol. 104, pp. 57–63.

    Google Scholar 

  123. V. V. Zherikhin, Selected Studies in Paleoecology and Phylogenetics (Tovarishchestvo Nauchnykh Izdanii KMK, Moscow, 2003) [in Russian].

    Google Scholar 

  124. E. A. W. Zimmermann, von., Specimen zoologiae geographicae, quadrupedum domicilia et migrationes sistens (Theodorum Haak et Socios, Lugduni Batavorum, 1777).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Mironov, 2006, published in Zoologicheskii Zhurnal, 2006, Vol. 85, no. 1, pp. 3–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A.N. Centers of marine fauna redistribution. Entmol. Rev. 86 (Suppl 1), S32–S44 (2006). https://doi.org/10.1134/S0013873806100034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873806100034

Keywords

Navigation