Skip to main content
Log in

Comparative insect karyology: Current state and applications

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The current state of the comparative insect karyology and the main applications of chromosomal analysis of insects are reviewed. The most important characteristics of insect karyotypes in mitosis and meiosis are considered. Karyological studies provide important information on the genetic structure, life cycles and ecological characteristics, evolution, taxonomy, and phylogeny of insects. Insects have two principal mechanisms of sex determination: more common mechanism is based on the presence of sex chromosomes, and another, on haplodiploidy. Karyotypic analysis allows a number of linkage groups as well as the primary sex ratio to be determined. Chromosomal rearrangement can be used for the ecological monitoring of various insect populations and for pest control. Although a full-scale use of karyotypic details for constructing phylogenies of large insect taxa (except for Diptera which have polygene chromosomes) is possible only in combination with other features, chromosomal characters are still very important for phylogenetic purposes because their evolution is more or less independent of the environment. Chromosomal analysis can be used to reveal and identify sibling species, as well as to identify immature phases of insects. Studies of insect chromosomes may reveal cases of hybridization between forms with different karyotypes. At present, squashed and air-dried preparations are used for studying insect chromosomes. Together with morphometric analysis, differential chromosome staining methods, such as C-and AgNOR-banding, fluorochrome staining, in situ hybridization (including chromosome painting), restriction banding, etc. are being used to detect and document karyotypic differences. An outline of trends and prospects of the comparative insect karyology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguin-Fombo, D., Kuznetsova, V.G., and Freitas, N., “Multiple Parthenoforms of Empoasca Leafhoppers (Cicadelloidea, Auchenorrhyncha, Homoptera) from Madeira Island. Where are These Unisexual Forms Coming from?” J. Hered. 97 [in press] (2006).

  2. Angus, R.B., “Separation of Two Species Standing as Helophorus aquaticus (L.) (Coleoptera, Hydrophilidae) by Banded Chromosome Analysis,” Syst. Entomol. 7, 265–281 (1982).

    Google Scholar 

  3. Araújo, S.M.S.R., Pompolo, S.G., Perfectti, F., and Camacho, J.P.M., “Integration of a B Chromosome into the A Genome of a Wasp,” Proc. Roy. Soc. London, Ser. B 268, 1127–1131 (2001).

    Article  Google Scholar 

  4. Ayabe, T., Hoshiba, H., and Ono, M., “Cytological Evidence for Triploid Males and Females in the Bumblebee, Bombus terrestris,” Chromosome Res. 12, 215–223 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Battisti, A., Boato, A., and Zanocco, D., “Two Sibling Species of the Spruce Web-Spinning Sawfly Cephalcia fallenii (Hymenoptera: Pamphiliidae) in Europe,” Syst. Entomol. 23(2), 99–108 (1998).

    Article  Google Scholar 

  6. Belle, E., Beckage, N., Rousselet, J., et al., “Visualization of Polydnavirus Sequences in Parasitoid Wasp Chromosome,” J. Virol. 76(11), 5793–5796 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Beye, M., Hasselmann, M., Fondrk, M.K., et al., “The Gene csd is the Primary Signal for Sexual Development in the Honeybee and Encodes an SR-type Protein,” Cell 114(4), 419–429 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Blackman, R.L., “Chromosome Numbers in the Aphididae and Their Taxonomic Significance,” Syst. Entomol. 5, 7–25 (1980).

    Google Scholar 

  9. Blackman, R.L., “Spermatogenesis in the Aphid Amphorophora tuberculata (Homoptera, Aphididae),” Chromosoma 92, 357–362 (1985).

    Article  Google Scholar 

  10. Blackman, R.L., Brown, P.A., and Eastop, V.F., “Problems in Pest Aphid Taxonomy: Can Chromosomes Plus Morphometries Provide Some Answers?” in Proceedings of Int. Symposium Population Structure, Genetics Taxon. Aphids. Smolenice, Sept. 9–14, 1985 (1987), pp. 233–238.

  11. Blackman, R.L., Halbert, S.E., and Carroll, T.W., “Association between Karyotype and Host Plant in Corn Leaf Aphid (Homoptera, Aphididae) in the Northwestern United States,” Envir. Entomol. 19(3), 609–611 (1990).

    Google Scholar 

  12. Blackman, R.L., Spence, J.M., Field, L.M., and Devonshire, A.L., “Chromosomal Location of the Amplified Esterase Genes Conferring Resistance to Insecticides in Myzus persicae (Homoptera, Aphididae),” Heredity 75, 297–302 (1995).

    CAS  Google Scholar 

  13. Blackman, R.L., Takada, H., and Kawakami, K., “Chromosomal Rearrangement Involved in Insecticide Resistance of Myzus persicae,” Nature 271(5644), 450–452 (1978).

    Article  Google Scholar 

  14. Bogdanov, Yu.F., “Homologous Series of Meiotic Characters: Evolution and Conservatism,” in Evolution, Ecology, and Biodiversity. Proc. Conf. in Memory of N. N. Vorontsov (1934–2000), Moscow, February 26–27, 2000 (Moscow Univ., Moscow, 2001), pp. 60–75.

    Google Scholar 

  15. Bongiorni, S., Fiorenzo, P., Pippoletti, D., and Prantera, G., “Inverted Meiosis and Meiotic Drive in Mealybugs,” Chromosoma 112, 331–341 (2004).

    Article  PubMed  Google Scholar 

  16. Brito, R.M., Caixeiro, A.P.A., Pompolo, S.G., and Azevedo, G.G., “Cytogenetic Data of Partamona peckolti (Hymenoptera, Apidae, Meliponini) by C Banding and Fluorochrome Staining with DA/CMA3 and DA/DAPI,” Gen. Mol. Biol. 26(1), 53–57 (2003).

    Google Scholar 

  17. Bugrov, A.G., Karamysheva, T.V., Pyatkova, M.S., et al., “B Chromosomes of Podisma sapporensis Shir. (Orthoptera, Acrididae) Analyzed by Chromosome Microdissection and FISH,” Folia Biol. (Kraków) 51(1–2), 1–11 (2003).

    CAS  Google Scholar 

  18. Bugrov, A.G., Karamysheva, T.V., Rubtsov, D.N., et al., “Comparative FISH Analysis of Distribution of B Chromosome Repetitive DNA in A and B Chromosomes in Two Subspecies of Podisma sapporensis (Orthoptera, Acrididae),” Cytogenet. Genome Res. 106, 284–288 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Bugrov, A.G., Warchalowska-Sliwa, E., Tatsuta, H., and Akimoto, S., “Chromosome Polymorphism and C-banding Variation of the Brachypterous Grasshopper Podisma sapporensis Shir. (Orthoptera, Acrididae) in Hokkaido, Northern Japan,” Folia Biol. (Kraków) 49(3–4), 137–152 (2001).

    CAS  Google Scholar 

  20. Camacho, J.P.M. (Ed.), “B Chromosome in the Eukaryote Genome,” Cytogenet. Genome Res. 106(2–4), 147–410 (2004).

  21. Camacho, J.P.M., Cabrero, J., Lopez-Leon, M.D., and Shaw, M.W., “Evolution of Near-Neutral B Chromosome,” Chromosomes Today 12, 301–318 (1997).

    CAS  Google Scholar 

  22. Camacho, J.P.M., Cabrero, J., Viseras, E., et al., “G-Banding in Two Species of Grasshopper and Its Relationship to C, N and Fluorescence Banding Techniques,” Genome 34(4), 638–643 (1991).

    Google Scholar 

  23. Camacho, J.P.M., Sharbel, T.F., and Beukeboom, L.W., “B-Chromosome Evolution,” Phil. Trans. R. Soc. Lond. Ser. B 355, 163–178 (2000).

    Article  CAS  Google Scholar 

  24. Carvalho, A.B., “Origin and Evolution of the Drosophila Y Chromosome,” Curr. Op. Genet. Devel. 12, 664–668 (2002).

    Article  CAS  Google Scholar 

  25. Chubareva, L.A. and Petrova, N.A., “B-Chromosome Polymorphism of Blackflies (Diptera, Simuliidae) in Northwestern Russia,” Tsitologiya 48(3), 253–263 (2006).

    CAS  Google Scholar 

  26. Coluzzi, M., Sabatini, A., della Torre, A., et al., “Polytene Chromosome Analysis of the Anopheles gambiae Species Complex,” Science 298(5597), 1415–1418 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Cook, J.M., “Sex Determination in the Hymenoptera: a Review of Models and Evidence,” Heredity 71, 421–435 (1993).

    Google Scholar 

  28. Cook, L.G., “Extraordinary and Extensive Karyotypic Variation: a 48-fold Range in Chromosome Number in the Gall-Inducing Scale Insect Apiomorpha (Hemiptera: Coccoidea: Ericoccidae),” Genome 43, 255–263 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Cook, L.G., “Extensive Chromosomal Variation Associated with Taxon Divergence and Host Specificity in the Gall-Inducing Scale Insect Apiomorpha munita (Schrader) (Hemiptera: Sternorrhyncha: Coccoidea: Eriococcidae),” Biol. J. Linn. Soc. 72, 265–278 (2001).

    Article  Google Scholar 

  30. Cook, L.G., Gullan, P.J., and Trueman, H.E., “A Preliminary Phylogeny of the Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea) Based on Nuclear Small-Subunit Ribosomal DNA,” Mol. Phyl. Evol. 25, 43–52 (2002).

    Article  CAS  Google Scholar 

  31. Crosland, M.W.J. and Crozier, R.H., “Myrmecia pilosula, an Ant with Only One Pair of Chromosomes,” Science 231 (4743), 1278 (1986).

    PubMed  Google Scholar 

  32. Crozier, R.H., Animal Cytogenetics (Gebrüder Borntraeger, Berlin-Stuttgart, 1975), Vol. 3, Part 7.

    Google Scholar 

  33. Danzig, E.M. and Gavrilov, I.A., “On the Systematics and Cytogenetics of Some Species of Scale Insects (Homoptera, Coccinea) from Voronezh,” Entomol. Obozr. 84(2), 334–338 (2005) [Entomol. Rev. 85 (5), 476–479 (2005)].

    Google Scholar 

  34. Dobzhansky, Th., Genetics and the Origin of Species, 2nd ed. (Columbia Univ. Press, New York, 1941).

    Google Scholar 

  35. Emeljanov, A.F., “Phylogeny and Evolution of Planthoppers of the Subfamily Orgeriinae (Homoptera, Dictyopharidae),” in Readings in the Memory of N.A. Cholodkovsky (Leningrad, 1980), No. 32, pp. 1–96.

  36. Emeljanov, A.F. and Kirillova, V.I., “Forms and Directions of Karyotype Evolution in Cicadina (Homoptera). I. Specific Features and Evolutionary Changes of Karyotypes in the Superfamily Cicadelloidea,” Entomol. Obozr. 68(3), 587–603 (1989).

    Google Scholar 

  37. Emeljanov, A.F. and Kirillova, V.I., “Forms and Directions of Karyotype Evolution in Cicadina (Homoptera). II. Specific Features and Evolutionary Changes of Karyotypes in the Superfamilies Cercopoidea, Cicadoidea, Fulgoroidea and in Cicadina as a Whole,” Entomol. Obozr. 70(4), 796–817 (1991).

    Google Scholar 

  38. Evans, J.D., Shearman, D.C.A., and Oldroyd, B.P., “Molecular Basis of Sex Determination in Haplodiploids,” Trends Ecol. Evol. 19(1), 1–3 (2004).

    Article  PubMed  Google Scholar 

  39. Fedorova, M.V., Zhantiev, R.D., and Gokhman, V.E., “Karyotypes of Mole Crickets (Orthoptera, Gryllotalpidae) of the European Part of USSR and the Caucasus,” Zool. Zh. 70(7), 43–50 (1991).

    Google Scholar 

  40. Foster, G.G., Whitten, M.J., Prout, T., and Gill, R., “Chromosome Rearrangements for the Control of Insect Pests,” Science 176(4037), 875–880 (1972).

    PubMed  CAS  Google Scholar 

  41. Gavrilov, I.A. and Kuznetsova, V.G., “New Data on the Scale Insect (Homoptera: Coccinea) Fauna of European Russia, Their Taxonomy and Cytogenetics,” in Proc. X International Symposium on Scale Insect Studies, 19–23 April, 2004 (2004), pp. 19–34.

  42. Gershenzon, S.M., “Chromosomes and Sex Determination in the Parasitic Wasp Mormoniella vitripennis Walker,” Tsitol. Genet. 2(1), 3–13 (1968).

    Google Scholar 

  43. Gokhman, V.E., “Differential Chromosome Staining in Parasitic Wasps of the Genus Dirophanes (Hymenoptera, Ichneumonidae),” Zool. Zh. 76(1), 65–68 (1997) [Entomol. Rev. 77 (2), 263–266 (1997)].

    Google Scholar 

  44. Gokhman, V.E., Doctoral Dissertation in Biology (Moscow, 2003).

  45. Gokhman, V.E., “Karyotype Evolution in Parasitic Wasps (Hymenoptera),” Zool. Zh. 83(8), 961–970 (2004) [Entomol. Rev. 84 (Suppl. 2), 161–169 (2004)].

    Google Scholar 

  46. Gokhman, V.E., “Significance of Chromosome Analysis for the Taxonomy of Parasitic Wasps (Hymenoptera),” Zool. Zh. 84 (2005).

  47. Gokhman, V.E. and Quicke, D.L.J., “The Last Twenty Years of Parasitic Hymenoptera Karyology: an Update and Phylogenetic Implications,” J. Hym. Res. 4, 41–63 (1995).

    Google Scholar 

  48. Gokhman, V.E. and Timokhov, A.V., “Taxonomic Status of Populations of Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) from Russia, Western Europe and USA,” in Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control, Ed. by G. Melika and C. Thuroczy (Agroinform, Budapest, 2002), pp. 253–258.

    Google Scholar 

  49. Gokhman, V.E. and Westendorff, M., “Chromosomes of Aphidius ervi Haliday, 1834 (Hymenoptera, Braconidae),” Beitr. Entomol. 53(1), 161–165 (2003).

    Google Scholar 

  50. Gokhman, V.E., Fedina, T.Yu., and Timokhov, A.V., “Life-History Strategies in Parasitic Wasps of the Anisopteromalus calandrae Complex (Hymenoptera: Pteromalidae),” Russ. Entomol. J. 8(3), 201–211 (1999).

    Google Scholar 

  51. Gokhman, V.E., Timokhov, A.V., and Fedina, T.Yu., “First Evidence for Sibling Species in Anisopteromalus calandrae (Hymenoptera: Pteromalidae),” Russ. Entomol. J. 7(3–4), 157–162 (1998).

    Google Scholar 

  52. Golub, N.V. and Nokkala, S., “The Karyotypes of Two Bark-Lice Species (Psocoptera, Psocomorpha, Amphipsocidae): the First Description of the Neo-XY Sex Chromosome System in Psocoptera,” Folia Biol. (Krakóv) 4(3–4), 153–156 (2001).

    Google Scholar 

  53. Golub, N.V. and Nokkala, S., “Chromosome Numbers of Two Sucking Louse Species (Insecta, Phthiraptera, Anoplura),” Hereditas 141, 94–96 (2004).

    Article  PubMed  Google Scholar 

  54. Golub, N.V., Nokkala, S., and Kuznetsova, V.G., “Holocentric Chromosomes of Psocids (Insecta, Psocoptera) Analyzed by C-Banding, Silver Impregnation and Sequence Specific Fluorochromes CMA3 and DAPI,” Folia Biol. (Kraków) 52(3–4), 143–149 (2004).

    Google Scholar 

  55. Grozeva, S. and Nokkala, S., “Chromosomes and Their Meiotic Behavior in Two Families of the Primitive Infraorder Dipsocoromorpha (Heteroptera),” Hereditas 125, 31–36 (1996).

    Article  Google Scholar 

  56. Grozeva, S., Kuznetsova, V.G., and Nokkala, S., “Patterns of Chromosomal Banding in Four Nabid Species (Heteroptera, Cimicomorpha, Nabidae) with High Chromosome Number Karyotypes,” Hereditas 140, 99–104 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Gruber, A., Stettler, P., Heiniger, P., et al., “Polydnavirus DNA of the Braconid Wasp Chelonus inanitus is Integrated in the Wasp Genome and Excised Only in Later Pupal and Adult Stages of the Female,” J. Gen. Virol. 77, 2873–2879 (1996).

    PubMed  CAS  Google Scholar 

  58. Gunderina, L.I., Kiknadze, I.I., Istomina, A.G., et al., “Divergence of the Polytene Chromosome Banding Sequence as Reflection of Evolutionary Changes in the Linear Genome Structure,” Genetika 41(2), 187–195 (2005).

    PubMed  CAS  Google Scholar 

  59. Hackstein, J.H.P., Hochstenbach, R., Hauschteck-Jungen, E., and Beukeboom, L.W., “Is the Y Chromosome of Drosophila an Evolved Supernumerary Chromosome?” BioEssays 18(4), 317–323 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. Haig, D., “The Evolution of Unusual Chromosomal Systems in Coccoids: Extraordinary Sex Ratios Revisited,” J. Theor. Biol. 6, 69–77 (1993).

    Google Scholar 

  61. Henriques-Gil, N., Santos, J.L., and Arana, P., “Evolution of a Complex B-Chromosome Polymorphism in the Grasshopper Eyrepocnemis plorans,” Chromosoma 89, 290–293 (1984).

    Article  Google Scholar 

  62. Hewitt, G.M., Animal Cytogenetics (Gebrüder Borntraeger, Berlin-Stuttgart, 1979), Vol. 3, Part 1.

    Google Scholar 

  63. Hoshiba, H. and Imai, H.T., “Chromosome Evolution of Bees and Wasps (Hymenoptera, Apocrita) on the Basis of C-Banding Pattern Analysis,” Japan. J. Entomol. 61, 465–492 (1993).

    Google Scholar 

  64. Hughes-Schrader, S., “Cytology of Coccids (Coccoidea-Homoptera),” Adv. Genet. 2, 127–203 (1948).

    Article  Google Scholar 

  65. Imai, H.T., Crozier, R.H., and Taylor, R.W., “Karyotype Evolution in Australian Ants,” Chromosoma 59, 341–393 (1977).

    Article  Google Scholar 

  66. Jacobs, D.H., “Cytogenetics and Karyotype Evolution of the Genus Miteronotus Jacobs (Heteroptera: Aradidae: Carventinae) with an Assessment of the Possible Role of Pseudopolyploidy in Their Karyotype Evolution,” African Entomol. 10(2), 171–184 (2002).

    Google Scholar 

  67. Jacobs, D.H., “The Behavior of a Multiple Sex Chromosome System in Dundocoris flavilineatus (Heteroptera: Aradidae: Carventinae) that Originated by Autosome — Sex Chromosome Fusion,” Folia Biol. (Kraków) 51(1–2), 23–32 (2003).

    Google Scholar 

  68. Johnson, J.A., Grissell, E.E., Gokhman, V.E., and Valero, K.A., “Description, Biology and Karyotype of a New Psilochalcis Kieffer (Hymenoptera: Chalcididae) from Indianmeal Moth Pupae (Lepidoptera: Pyralidae) Associated with Culled Figs,” Proc. Entomol. Soc. Wash. 103(4), 777–787 (2001).

    Google Scholar 

  69. Jones, R.N. and Rees, H., B Chromosomes (Acad. Press, New York, 1982).

    Google Scholar 

  70. Kandul, N.P., Lukhtanov, V.A., Dantchenko, A.V., et al., “Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) Inferred from mtDNA Sequences of COI and COII and Nuclear Sequences of EFF1-α: Karyotype Diversification and Species Radiation,” Syst. Biol. 53(2), 278–298 (2004).

    Article  PubMed  Google Scholar 

  71. Kazmer, D.J., Hopper, K.R., Coutinot, D.M., and Heckel, D.G., “Suitability of Random Amplified Polymorphic DNA for Genetic Markers in the Aphid Parasitoid, Aphelinus asychis Walker,” Biol. Control 5, 503–512 (1995).

    Article  Google Scholar 

  72. Kiknadze, I.I., Golygina, V.V., Istomina, A.G., and Gunderina, L.I., “Chromosome Polymorphism During Population Divergence in Chironomid Midges (Diptera, Chironomidae),” Sib. Ekol. Zh. 5, 635–651 (2004).

    Google Scholar 

  73. Kiknadze, I.I., Kerkis, I.E., and Filippova, M.A., “Chromosomal Polymorphism in Natural Siberian Populations of Chironomus plumosus,” Zool. Zh. 66(6), 877–882 (1987).

    Google Scholar 

  74. Kiknadze, I.I., Shilova, A.I., Kerkis, I.E., et al., Karyotypes and Morphology of Larvae of the Tribe Chironomini: An Atlas (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  75. King, M., Species Evolution: the Role of Chromosome Change (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  76. Klass, K.-D., Zompro, O., Kristensen, N.P., and Adis, J., “Mantophasmatodea: a New Insect Order with Extant Members in the Afrotropics,” Science 296, 1456–1459 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. Kuznetsova, V.G., “Holokinetic Chromosomes and Their Occurrence in Insects and Other Invertebrates,” in Karyosystematics of Invertebrates, Ed. by L.A. Chubareva (Zool. Inst. Acad. Sci. USSR, Leningrad, 1979), pp. 5–19 [in Russian].

    Google Scholar 

  78. Kuznetsova, V.G., Phylogenetic Analysis of Chromosomal Variability and Karyosystematics of the Family Dictyopharidae (Homoptera, Auchenorrhyncha), Entomol. Obozr. 64(3), 539–553 (1985).

    Google Scholar 

  79. Kuznetsova, V.G., Doctoral Dissertation in Biology (St. Petersburg, 1992).

  80. Kuznetsova, V.G. and Gavrilov, I.A., “Cytogenetics of Scale Insects (Insecta: Homoptera: Coccinea): a ‘Terra Incognita’?” Evol. Biol. (Tomsk) 3, 144–180 (2005).

    Google Scholar 

  81. Kuznetsova, V.G., Maryańska-Nadachowska, A., and Nokkala, S., “C-Banded Karyotype of Psyllid Species Aphalara calthae (L.) (Psylloidea, Homoptera, Insecta),” Cytologia 62, 237–239 (1997).

    Google Scholar 

  82. Kuznetsova, V.G., Westendorff, M., and Nokkala, S., “Patterns of the Chromosome Banding in the Sawfly Family Tenthredinidae (Hymenoptera, Symphyta),” Caryologia 54(3), 227–233 (2001).

    Google Scholar 

  83. Kuznetsova, V.G., Nokkala, S., and Shcherbakov, D.E., “Karyotype, Reproductive Organs, and Pattern of Gametogenesis in Zorotypus hubbardi Caudell (Insecta: Zoraptera, Zorotypidae), with Discussion on Relationships of the Order,” Can. J. Zool. 80, 1047–1054 (2002).

    Article  Google Scholar 

  84. Kuznetsova, V.G., Maryańska-Nadachowska, A., and Nokkala, S., “A New Approach to the Auchenorrhyncha (Hemiptera, Insecta) Cytogenetics: Chromosomes of the Meadow Spittlebug Philaenus spumarius (L.) Examined Using Various Chromosome Banding Techniques,” Folia Biol. (Kraków) 51(1–2), 33–40 (2003).

    Google Scholar 

  85. Kuznetsova, V.G., Grozeva, S., and Nokkala, S., “New Cytogenetic Data on Nabidae (Heteroptera: Cimicomorpha), with a Discussion of Karyotype Variation and Meiotic Patterns, and Their Taxonomic Significance,” Eur. J. Entomol. 101, 205–210 (2004).

    Google Scholar 

  86. Langer, S., Kraus, J., Jentsch, I., and Speicher, M.R., “Multicolor Chromosome Painting in Diagnostic and Research Applications,” Chromosome Res. 12, 15–23 (2004).

    Article  PubMed  CAS  Google Scholar 

  87. Lauritzen, M., “Q-and G-Band Identification of Two Chromosomal Rearrangements in Peach-Potato Aphids, Myzus persicae (Sulzer), Resistant to Insecticides,” Hereditas 97(1), 95–102 (1982).

    Google Scholar 

  88. Lesse, H. de, “ceLes nombres de chromosomes dans le groupe de Lysandra argester et leur incidence sur sa taxonomie,” Bull. Soc. Entomol. Fr. 75(3–4), 64–68 (1970).

    Google Scholar 

  89. Lorite, P., Chica, E., and Palomeque, T., “G-Banding and Chromosome Condensation in the Ant, Tapinoma nigerrimum,” Chromosome Res. 4, 77–79 (1996).

    Article  PubMed  CAS  Google Scholar 

  90. Lorite, P., Garcia, M.F., Carrillo, J.A., and Palomeque, T., “Restriction Endonuclease Chromosome Banding in Tapinoma nigerrimum (Hymenoptera, Formicidae),” Hereditas 131, 197–201 (1999).

    Article  Google Scholar 

  91. Lukhtanov, V.A., Doctoral Dissertation in Biology (Zool. Inst. RAS, St. Petersburg, 1999).

    Google Scholar 

  92. Lukhtanov, V.A. and Kuznetsova, V.G., “Karyotype Structure in Higher Lepidopterans (Lepidoptera, Papilionomorpha),” Entomol. Obozr. 67(3), 480–495 (1988).

    Google Scholar 

  93. Lukhtanov, V.A., Kandul, N.P., Plotkin, J.B., et al., “Reinforcement of Pre-Zygotic Isolation and Karyotype Evolution in Agrodiaetus Butterflies,” Nature 436, 385–389 (2005).

    Article  PubMed  CAS  Google Scholar 

  94. MacGregor, H.C. and Varley, J.M., Working with Animal Chromosomes (John Wiley & Sons, 1983). Translated under the same title (Mir, Moscow, 1986) [in Russian].

  95. Mamontova, V.A., “Phylogeny and System of Aphids of the Family Lachnidae (Aphidoidea, Homoptera) Using the Karyotypic Data,” Vestnik Zool. 35(4), 3–16 (2001).

    Google Scholar 

  96. Maryańska-Nadachowska, A., “A Review of Karyotype Variation in Jumping Plant-Lice (Psylloidea, Sternorrhyncha, Hemiptera) and Checklist of Chromosome Numbers,” Folia Biol. (Kraków) 50(3–4), 135–152 (2002).

    Google Scholar 

  97. Maryańska-Nadachowska, A., “B Chromosome in Sternorrhyncha (Hemiptera, Insecta),” Cytogenet. Genome Res. 106, 210–214 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. Mayr, E., Populations, Species, and Evolution (Harvard Univ. Press, Cambridge, 1970). Translated under the same title (Mir, Moscow, 1974) [in Russian].

    Google Scholar 

  99. Michailova, P., Ilkova, J., Petrova, N., and White, K., “Rearrangements in Salivary Gland Chromosomes of Chironomus riparius Mg. (Diptera, Chironomidae) Following Exposure to Lead,” Caryologia 54(4), 349–363 (2001).

    Google Scholar 

  100. Naito, T. and Suzuki, H., “Sex Determination in the Sawfly, Athalia rosae ruficornis (Hymenoptera): Occurrence of Triploid Males,” J. Heredity 82, 101–104 (1991).

    Google Scholar 

  101. Nechayeva, G.A., Kuznetsova, V.G., and Nokkala, S., “New Data on the Karyotype of Pseudococcus viburni (Sign.) (Homoptera, Coccinea),” Entomol. Obozr. 83(1), 23–31 (2004) [Entomol. Rev. 84 (4), 393–400 (2004)].

    Google Scholar 

  102. New Data on the Karyosystematics of Dipterans. Ed. by Chubareva, L.A. (Zool. Inst. Acad. Sci. USSR, Leningrad, 1980) [in Russian].

    Google Scholar 

  103. Nokkala, S., “The Meiotic Behavior of B-Chromosomes and Their Effect on the Segregation of Sex Chromosomes in Males of Hemerobius marginatus L. (Hemerobidae, Neuroptera),” Hereditas 105, 221–227 (1986).

    Google Scholar 

  104. Nokkala, S., Kuznetsova, V., and Maryańska-Nadachowska, A., “Achiasmate Segregation of a B Chromosome from the X Chromosome in Two Species of Psyllids (Psylloidea, Homoptera),” Genetica 108, 181–189 (2000).

    Article  PubMed  CAS  Google Scholar 

  105. Nokkala, S. and Golub, N.V., “Cytogenetics of Three Parthenogenetic Psocid Species (Psocoptera, Psocomorpha),” Hereditas 137, 198–201 (2002).

    Article  Google Scholar 

  106. Nokkala, S., Grozeva, S., Kuznetsova, V., and Maryańska-Nadachowska, A., “The Origin of the Achiasmatic XY Sex Chromosome System in Cacopsylla peregrina (Frst.) (Psylloidea, Homoptera),” Genetica 119, 327–332 (2003).

    Article  PubMed  Google Scholar 

  107. Nokkala, S., Kuznetsova, V., Maryańska-Nadachowska, A., and Nokkala, C., “Holocentric Chromosomes in Meiosis. I. Restriction of the Number of Chiasmata in Bivalents,” Chromosome Res. 12, 733–739 (2004).

    Article  PubMed  CAS  Google Scholar 

  108. Nokkala, S., Kuznetsova, V., Maryańska-Nadachowska, A., and Nokkala, C., “Holocentric Chromosomes in Meiosis. II. The Modes of Orientation and Segregation of Trivalents,” Chromosome Res. 14 (in press) (2006).

  109. Normark, B.B., “The Evolution of Alternative Genetic Systems in Insects,” Annu. Rev. Entomol. 48, 397–423 (2003).

    Article  PubMed  CAS  Google Scholar 

  110. Nur, U., “Evolution of Unusual Chromosome Systems in Scale Insects (Coccoidea: Homoptera),” in Insect Cytogenetics, Ed. by Blackman, R.L., Hewitt, Y.M., and Ashburner, M. (Roy. Entomol. Soc., London, 1980), pp. 97–117.

    Google Scholar 

  111. Nur, U. and Brett, B.L.H., “Control of Meiotic Drive of B Chromosomes in the Mealybug, Pseudococcus affinis (obscurus),” Genetics 115, 499–510 (1987).

    PubMed  Google Scholar 

  112. Nur, U. and Brett, B.L.H., “Genotypes Affecting the Condensation and Transmission of Heterochromatic B Chromosomes in the Mealybug Pseudococcus affinis,” Chromosoma (Berl.) 96, 205–212 (1988).

    Article  Google Scholar 

  113. Nur, U., Werren, J.H., Eickbush, D.G., et al., “A ’selfish’ B Chromosome that Enhances Its Transmission by Eliminating the Paternal Genome,” Science 240, 512–514 (1988).

    PubMed  CAS  Google Scholar 

  114. Odierna, G., Baldanza, F., Aprea, G., and Olmo, E., “Occurrence of G-Banding in Metaphase Chromosomes of Encarsia berlesei (Hymenoptera: Aphelinidae),” Genome 36, 662–667 (1993).

    PubMed  CAS  Google Scholar 

  115. Palomeque, T., Chica, E., Cano, M.A., and de la Guardia, R.D., “Karyotypes, C-Banding and Chromosomal Location of Active Nucleolar Organizing Regions in Tapinoma (Hymenoptera, Formicidae),” Genome 30(2), 277–280 (1988).

    Article  PubMed  CAS  Google Scholar 

  116. Perepelov, E. and Bugrov, A.G., “Constitutive Heterochromatin in Chromosomes of Some Aeshnidae, with Notes on the Formation of the neo-XY/neo-XX Mode of Sex Determination in Aeshna (Anisoptera),” Odonatologica 31(1), 77–83 (2002).

    Google Scholar 

  117. Petrova, N.A., Michailova, P., and Ilkova, Yu., “Comparative Cytogenetical Variability of Polytene Chromosomes from Salivary Glands of Chironomus riparius Mg., 1804 (Diptera, Chironomidae) from Two Polluted Biotopes of Bulgaria and Russia,” Genetika 40(1), 49–58 (2004).

    PubMed  CAS  Google Scholar 

  118. Polukonova, N.V. and Belyanina, S.I., “On the Possible Hybridogenic Origin of Chironomus usenicus Loginova et Beljanina (Chironomidae, Diptera),” Genetika 38(11), 1635–1640 (2002).

    PubMed  CAS  Google Scholar 

  119. Polukonova, N.V., Belyanina, S.I., Michailova, P.V., and Golygina, V.V., “Comparative Analysis of the Karyotypes and Karyopools of Midges Chironomus nuditarsis and Ch. curabilis (Chironomidae, Diptera),” Zool. Zh. 84(2), 195–206 (2005) [Entomol. Rev. 85 (6), 587–597 (2005)].

    Google Scholar 

  120. Quicke, D.L.J., Parasitic Wasps (Chapman and Hall, London, 1997).

    Google Scholar 

  121. Quicke, D.L.J., “Parasitic Wasp Taxonomy into the 21st Century,” in Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control, Ed. by Melika, Y. and Thuróczy, C. (Agroinform, Budapest, 2002), pp. 3–10.

    Google Scholar 

  122. Quicke, D.L.J., “The World of DNA Barcoding and Morphology—Collision or Synergism and What of the Future?” The Systematist 23, 8–12 (2004).

    Google Scholar 

  123. Quicke, D.L.J. and Belshaw, R., “Incongruence between Morphological Data Sets: an Example of Endoparasitism among Parasitic Wasps (Hymenoptera: Braconidae),” Syst. Biol. 48(3), 436–454 (1999).

    Article  Google Scholar 

  124. Rasnitsyn, A.P., “The Process of Evolution and the Methods of Taxonomy,” Trudy Russ. Entomol. O-va 73, 1–108 (2002).

    Google Scholar 

  125. Robinson, A.S., “Sex Ratio Manipulation in Relation to Insect Pest Control,” Ann. Rev. Genet. 17, 191–214 (1983).

    Article  PubMed  CAS  Google Scholar 

  126. Rocha-Sanchez, S.M.S. and Pompolo, S.G., “Imitate to Integrate: Reviewing the Pathway for B Chromosome Integration in Trypoxylon (Trypargilum) albitarse (Hymenoptera, Sphecidae),” Cytogenet. Genome Res. 106, 398–401 (2004).

    Article  PubMed  CAS  Google Scholar 

  127. Rodionov, A.V., “Evolution of the Chromosome Banding Patterns,” Genetika 35(3), 277–290 (1999).

    PubMed  CAS  Google Scholar 

  128. Rousselet, J., Chaminade, N., Géri, C, et al., “Chromosomal Location of rRNA Genes in Diprion pini Detected by in situ Hybridization,” C. R. Acad. Sci. Paris Sci. Vie 322, 461–466 (1999).

    CAS  Google Scholar 

  129. Rubtsov, N.B., Chromosomes of Mammals: Methods of Cytological Analysis. Part 1 (Novosib. State Univ., Novosibirsk, 2004) [in Russian].

    Google Scholar 

  130. Rubtsov, N.B. and Karamysheva, T.V., “Modern Cytogenetic in Color, or Multicolor FISH Today,” Vestnik VOGIS, No. 11, 11–15 (1999).

  131. Rütten, K.B., Pietsch, C, Olek, K., et al., “Chromosomal Anchoring of Linkage Groups and Identification of Wing Size QTL Using Markers and FISH Probes Derived from Microdissected Chromosomes in Nasonia (Pteromalidae: Hymenoptera),” Cytogenet. Genome Res. 105, 126–133 (2004).

    Article  PubMed  CAS  Google Scholar 

  132. Sahara, K., Marec, F., and Traut, W., “TTAGG Telomeric Repeats in Chromosomes of Some Insects and Other Arthropods,” Chromosome Res. 7(6), 449–460 (1999).

    Article  PubMed  CAS  Google Scholar 

  133. Schertan, H., Cremer, T., Arnason, U., et al., “Comparative Chromosome Painting Discloses Homologous Segments in Distantly Related Mammals,” Nature Genetics 6, 342–347 (1994).

    Article  Google Scholar 

  134. Schütt, C. and Nöthiger, R., “Structure, Function and Evolution of Sex-Determining Systems in Dipteran Insects,” Development 127, 667–677 (2000).

    PubMed  Google Scholar 

  135. Serebrovskii, A.S., “On a New Possible Method of Controlling Insect Pests,” Zool. Zh. 19(4), 618–630 (1940).

    Google Scholar 

  136. Sharakhov, I.V., Serazin, A.C, Grushko, O.G., et al., “Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus,” Science 298, 182–185 (2002).

    Article  PubMed  CAS  Google Scholar 

  137. Shobanov, N.A., “Evolution of the Genus Chironomus (Diptera, Chironomidae): 2. Phylogenetic Model,” Zool. Zh. 81(6), 711–718 (2002) [Entomol. Rev. 82 (5), 584–592 (2002)].

    Google Scholar 

  138. Shobanov, N.A. and Zotov, S.A., Cytogenetic Aspects of the Phylogeny of the Genus Chironomus Meigen (Diptera, Chironomidae), Entomol. Obozr. 80(1), 180–192 (2001) [Entomol. Rev. 81 (1), 47–58 (2001)].

    Google Scholar 

  139. Smith, S.G. and Virkki, N., Animal Cytogenetics (Gebrüder Borntraeger, Berlin-Stuttgart, 1978), Vol. 3, Part 5.

    Google Scholar 

  140. Snell, G.D., “The Determination of Sex in Habrobracon,” Proc. Nat. Acad. Sci. USA 21(7), 446–453 (1935).

    Article  PubMed  CAS  Google Scholar 

  141. Stebaev I.V., Bugrov, A.G., and Vysotskaya, L.V., “Analysis of Phylogenetic Relations of Short-Horned Grasshoppers and Locusts (Orthoptera: Caelifera, Eumastacoidea, and Acridoidea) in the USSR Fauna, Based on Cytogenetical, Taxonomical, and Ecological Data,” Zh. Obshch. Biol. 45(4), 456–471 (1984).

    Google Scholar 

  142. Stegnii, V.N., Genome Architectonics, Systemic Mutations, and Evolution (Novosib. Univ., Novosibirsk, 1993) [in Russian].

    Google Scholar 

  143. Stoltz, D.B. and Whitfield, J.B., “Viruses and Virus-Like Entities in the Parasitic Hymenoptera,” J. Hym. Res. 1, 125–139 (1992).

    Google Scholar 

  144. Stouthamer, R., “Sex-Ratio Distorters and Other Selfish Genetic Elements: Implications for Biological Control,” in Genetics, Evolution and Biological Control, Ed. by Ehler, L.E., Sforza, R., and Mateille, T. (CABI Publ., Oxon-Cambridge, 2004), pp. 235–252.

    Google Scholar 

  145. Stouthamer, R., van Tilborg, M., de Jong, J.H., et al., “Selfish Element Maintains Sex in Natural Populations of a Parasitoid Wasp,” Proc. Roy. Soc. London. Ser. B 268, 617–622 (2001).

    Article  CAS  Google Scholar 

  146. Strunnikov, V.A., Genetic Methods of Selection and Regulation of Silkworm (Agropromizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  147. Sturtevant, A.H., A History of Genetics (Cold Spring Harbor Laboratory Press, 2001).

  148. Suomalainen, E., Saura, A., and Lokki, J., Cytology and Evolution in Parthenogenesis (CRC Press, Boca Raton, 1987).

    Google Scholar 

  149. Timokhov, A.V. and Gokhman, V.E., “Host Preference of Parasitic Wasps of the Anisopteromalus calandrae Species Complex (Hymenoptera: Pteromalidae),” Acta Soc. Zool. Bohem. 67(1), 35–39 (2003).

    Google Scholar 

  150. Tombesi, M.L. and Papeschi, A.G., “Meiosis in Haematopinus suis and Menacanthus stramineus (Phthiraptera, Insecta),” Hereditas 119, 31–38 (1993).

    Article  Google Scholar 

  151. Tombesi, M.L., Papeschi, A.G., and Mola, L.M., “Spermatogenesis in Bovicola limbata Gervais, 1984 and B. caprae Gurlt, 1843 (Phthiraptera, Ischnocera),” Cytologia 64, 25–27 (1998).

    Google Scholar 

  152. Tothová, A. and Marec, F., “Chromosomal Principle of Radiation-Induced F1 Sterility in Ephestia kuehniella (Lepidoptera: Pyralidae),” Genome 44, 172–184 (2001).

    Article  PubMed  Google Scholar 

  153. Tsurusaki, N., Nakano, S., and Katakura, H., “Karyotypic Differentiation in the Phytophagous Ladybird Beetles Epilachna vigintioctomaculata Complex and Its Possible Relevance to the Reproductive Isolation, with a Note on Supernumerary Y Chromosomes Found in E. pustulosa,” Zool. Sci. 10, 997–1015 (1993).

    Google Scholar 

  154. Ueno, T. and Tanaka, T., “Comparison between Primary and Secondary Sex Ratios in Parasitoid Wasps Using a Method for Observing Chromosomes,” Entomol. Exper. Appl. 82, 105–108 (1997).

    Article  Google Scholar 

  155. Ueshima, N., Animal Cytogenetics (Gebrüder Borntraeger, Berlin-Stuttgart, 1979), Vol. 3, Part 6.

    Google Scholar 

  156. Viggiani, G., “Richerche sugli Hymenoptera Chalcidoidea: XV. Osservazioni cariologiche preliminari sull’ Aphelinus mali (Hald.),” Bol. Lab. Entomol. Agrar. “Filippo Silvestri” 25, 326–330 (1967).

    Google Scholar 

  157. Vinogradova, E.B. and Petrova, N.A., “First Record of a Synanthropic Population of Chironomus riparius Meigen, 1804 (Diptera, Chironomidae) in Dwelling House Basements in St. Petersburg and Some of Its Biological and Karyological Characteristics,” Entomol. Obozr. 83(2), 334–348 (2004) [Entomol. Rev. 84 (7), 752–763 (2004)].

    Google Scholar 

  158. Vorontsov, N.N., “The Importance of Chromosome Set Studies for Mammal Taxonomy,” Byull. Mosk. O-va Ispyt. Prirody (Biol.) 63(2), 5–36 (1958).

    Google Scholar 

  159. Vorontsov, N.N., Development of Evolutionary Ideas in Biology (Progress-Traditsiya, Moscow, 1999) [in Russian].

    Google Scholar 

  160. Vysotskaya, L.V., “Recombinant Parameters of Chromosomes: The Macro-and Microevolutionary Aspects,” in Evolutionary Biology. Proc. II Int. Conf. on Problems of the Species and Speciation, Ed. by V.N. Stegnii (Tomsk State Univ., Tomsk, 2002), Vol. 2, pp. 51–64.

    Google Scholar 

  161. Vysotskaya, L.V. and Bugrov, A.G., “Comparative Karyological Analysis of the Tribe Bryodemini (Orthoptera, Acrididae, Oedipodinae) in the USSR Fauna,” Zool. Zh. 66(8), 1189–1195 (1987).

    Google Scholar 

  162. Vysotskaya, L.V. and Stepanova, D.Ch., “Use of Distribution of Chiasmata in Late Meiotic Prophase for Evaluating Phylogenetic Relations in the Tribe Bryodemini (Orthoptera, Acrididae),” Zool. Zh. 75(8), 1159–1166 (1996).

    Google Scholar 

  163. Weith, A. and Traut, W., “Synaptonemal Complexes with Associated Chromatin in a Moth, Ephestia kuehniella Z. The Fine Structure of the W Chromosomal Heterochromatin,” Chromosoma 78, 275–291 (1980).

    Article  Google Scholar 

  164. Werren, J.H., Nur, U., and Eickbush, D., “An Extrachromosomal Factor Causing Loss of Paternal Chromosomes,” Nature 327, 75–76 (1987).

    Article  PubMed  CAS  Google Scholar 

  165. White, M.J.D., Animal Cytology and Evolution (Cambridge Univ. Press, Cambridge, 1973).

    Google Scholar 

  166. Wolf, K.W., “The Structure of Condensed Chromosomes in Mitosis and Meiosis of Insects,” Int. J. Insect Morphol. Embryol. 25(1–2), 37–62 (1996).

    Article  Google Scholar 

  167. Wuelker, W., Dévai, G., and Dévai, I., “Computer Assisted Studies of Chromosome Evolution in the Genus Chironomus (Dipt.). Comparative and Integrated Analysis of Chromosome Arms A, E and F,” Acta Biol. Debr. Oecol. Hung. 2, 373–387 (1989).

    Google Scholar 

  168. Zhimulev, I.F., General and Molecular Genetics. A Textbook (Sibir, Univ., Novosibirsk, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. E. Gokhman, V. G. Kuznetsova, 2006, published in Entomologicheskoe Obozrenie, 2006, Vol. 85, No. 1, pp. 235–257.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhman, V.E., Kuznetsova, V.G. Comparative insect karyology: Current state and applications. Entmol. Rev. 86, 352–368 (2006). https://doi.org/10.1134/S0013873806030110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873806030110

Keywords

Navigation