Skip to main content
Log in

High-Frequency Electron Transport under Pulsed Mechanical Action on Polypropylene–Graphene Nanoplates Composite

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A phenomenon of change in the frequency of a mechanically activated current was detected for the first time. This phenomenon consists in the fact that electric current pulses produced by a rheological explosion differ in frequency characteristics between a polypropylene‑graphene nanoplates composite and the matrix polymer (polypropylene). It was shown that the Fourier transforms of the current signals from the composite according to the Havriliak–Negami model for the experimental frequency dependence of conductivity agree well with the results of the calculation using the Drude model for multilayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, pp. 666–673. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Castro, NetoA.N., Guinea, F., Peres, M.M., Novoselov, K.S., and Geim, A.K., Rev. Mod. Phys., 2009, vol. 81, pp. 109–127. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  3. Ivanovskii, A.I., Russ. Chem. Rev., 2012, vol. 81, pp. 571–605. https://doi.org/10.1070/RC2012v081n07ABEH004302

    Article  CAS  Google Scholar 

  4. Aleksandrov, A.I., Aleksandrov, I.A., and Prokof’ev, A.I., Dokl. Phys. Chem., 2013, vol. 451, no. 1, pp. 147–149. https://doi.org/10.1134/S0012501613070014

    Article  CAS  Google Scholar 

  5. Aleksandrov, A.I., Aleksandrov, I.A., and Prokof’ev, A.I., JETP Lett., 2013, vol. 97, no. 9, pp. 546–548. https://doi.org/10.1134/S0021364013090038

    Article  CAS  Google Scholar 

  6. Aleksandrov, A.I., Shevchenko, V.G., and Aleksandrov, I.A., Tech. Phys. Lett., 2020, vol. 46, no. 7, pp. 346–349. https://doi.org/10.1134/S1063785020040021

    Article  CAS  Google Scholar 

  7. Aleksandrov, A.I., Shevchenko, V.G., Aleksandrov, I.A., Fokin, S.V., and Ovcharenko, V.I., Tech. Phys. Lett., 2021, vol. 47, no. 1, pp. 19–22. https://doi.org/10.21883/PJTF.2021.01.50453.18451

    Article  CAS  Google Scholar 

  8. Polschikov, S., Nedorezova, P., Palaznik, O., Klyamkina, A., Shashkin, D., Gorenberg, A., Krasheninnikov, V., Shevchenko, V.G., and Arbuzov, A., Polym. Eng. Sci., 2018, vol. 58, pp. 1461–1470. https://doi.org/10.1002/pen.24644

    Article  CAS  Google Scholar 

  9. Broadband Dielectric Spectroscopy, Kremer, F. and Schonhals, A., Eds., New York: Springer, 2003.

    Google Scholar 

  10. Havriliak, S. and Negami, S.A., Polymer, 1967, vol. 8, pp. 161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  11. Ryzhii, V., Ryzhii, M., and Otsuji, Y., J. Appl. Phys., 2007, vol. 101, art. no. 083114. https://doi.org/10.1063/1.2717566

    Article  CAS  Google Scholar 

  12. Aleksandrov, A.I., Alexandrov, I.A., Shevchenko, V.G., and Ozerin, A.N., Chinese J. Polym. Sci., 2021, vol. 39, pp. 601–609. https://doi.org/10.1007/s10118-021-2511-5

    Article  CAS  Google Scholar 

  13. Chernysheva, D.V., Leontyev, I.N., Avramenko, M.V., Lyanguzov, N.V., Grebenyukd, T.I., and Smirnova, N.V., Mendeleev Commun., 2021, vol. 31, pp. 160–162. https://doi.org/10.1016/j.mencom.2021.03.005

    Article  CAS  Google Scholar 

  14. Aleksandrov, A.I., Shevchenko, V.G., Aleksandrov, I.A., Degtyarev, E.N., and Abramchuk, S.S., Polym. Sci., Ser. A, 2020, vol. 62, no. 5, pp. 550–561. https://doi.org/10.1134/S0965545X2004001X

    Article  CAS  Google Scholar 

  15. Aleksandrov, A.I., Shevchenko, V.G., and Ozerin, A.N., Polym. Sci., Ser. A, 2021, vol. 63, no. 1, pp. 34–38. https://doi.org/10.1134/S0965545X21010016

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (subject code FFSM-2021-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aleksandrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.I., Shevchenko, V.G., Klyamkina, A.N. et al. High-Frequency Electron Transport under Pulsed Mechanical Action on Polypropylene–Graphene Nanoplates Composite. Dokl Phys Chem 502, 19–22 (2022). https://doi.org/10.1134/S0012501622020014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622020014

Keywords:

Navigation