Skip to main content
Log in

Electrical Resistivity of Cu–Zr Melts

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

For the first time, the electrical resistivity of liquid Cu64.5Zr35.5, Cu50Zr50, and Cu33.3Zr66.7 alloys at temperatures up to 1600 K has been measured by the contactless method in a rotating magnetic field. The measurements were taken during cooling in a helium atmosphere with a purity of 99.995%. The error of the electrical resistivity determination did not exceed 5%. It has been found that the electrical resistivity of liquid Cu64.5Zr35.5, Cu50Zr50, and Cu33.3Zr66.7 alloys decreases linearly with increasing temperature, while it increases with temperature for liquid copper and zirconium. The concentration dependences of the electrical resistivity and its temperature coefficient have a maximum at 55 at % and a minimum at about 60 at % Zr, respectively. These concentration dependences are similar to the dependences obtained for amorphous alloys and are explained in the framework of the Ziman theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Inoue, A., Masumoto, T., and Yano, N., J. Mater. Sci., 1984, vol. 19, pp. 3786–3795.

    Article  CAS  Google Scholar 

  2. Kwon, O.J., Kim, Y.C., Kim, K.B., Lee, Y.K., and Fleury, E., Met. Mater. Int., 2006, vol. 12, pp. 207–212.

    Article  CAS  Google Scholar 

  3. Gantmakher, V.F. and Kulesko, G.I., Solid State Commun., 1985, vol. 53, pp. 267–268.

    Article  CAS  Google Scholar 

  4. Bykov, V.A., Kulikova, T.V., Yagodin, D.A., Filippov, V.V., and Shunyaev, K.Yu., Phys. Met. Metallogr., 2015, vol. 116, pp. 1067–1072.

  5. Fan, G.J., Freels, M., Choo, H., Liaw, P.K., Li, J.J.Z., Rhim, Won-Kyu., Johnson, W.L., Yu, P., and Wang, W.H., Appl. Phys. Lett., 2006, vol. 89, pp. 241917/1–241917/3.

    Article  CAS  Google Scholar 

  6. Gangopadhyay, A.K., Blodgett, M.E., Johnson, M.L., McKnight, J., Wessels, V., Vogt, A.J., Mauro, N.A., Bendert, J.C., Soklaski, R., Yang, L., and Kelton, K.F., J. Chem. Phys., 2014, vol. 140, p. 044505.

    Article  CAS  PubMed  Google Scholar 

  7. Matula, R.A., J. Phys. Chem. Ref. Data, 1979, vol. 8, pp. 1147–1298.

    Article  CAS  Google Scholar 

  8. Korobenko, V.N. and Savvatimskii, A.I., High Temp., 2001, vol. 39, pp. 525–531.

  9. Pavuna, D., J. Non-Cryst. Solids, 1984, vol. 61/62, pp. 1353–1358.

    Article  Google Scholar 

  10. Ziman J.M., Principles of the Theory of Solids, Cambridge Univ. Press, 1972. Translated under the title Printsipy teorii tverdogo tela, Moscow: Mir, 1974.

  11. Chen, H.S., Rep. Prog. Phys., 1980, vol. 43, pp. 353–432.

    Article  Google Scholar 

  12. Mattern, N., Schops, A., Kuhn, U., Acker, J., Khvostikova, O., and Eckert, J., J. Non-Cryst. Solids, 2008, vol. 354, pp. 1054–1060.

    Article  CAS  Google Scholar 

  13. Waseda, Y. and Chen, H.S., Phys. Stat. Solidi B, 1978, vol. 87, pp. 777–782.

    Article  CAS  Google Scholar 

  14. Mendelev, M.I., Kramer, M.J., Ott, R.T., Sordelet, D.J., Besser, M.F., Kreyssig, A., Goldman, A.I., Wessels, V., Sahu, K.K., Kelton, K.F., Hyers, R.W., Canepari, S., and Rogers, J.R., Philos. Mag., 2010, vol. 90, pp. 3795–3815.

    Article  CAS  Google Scholar 

  15. Mauro, N.A., Vogt, A.J., Johnson, M.L., Bendert, J.C., and Kelton, K.F., Appl. Phys. Lett., 2013, vol. 103, p. 021904/1—021904/4.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 14–13–00676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Filippov.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, V.V., Yagodin, D.A., Shunyaev, K.Y. et al. Electrical Resistivity of Cu–Zr Melts. Dokl Phys Chem 483, 155–158 (2018). https://doi.org/10.1134/S0012501618120035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501618120035

Navigation