Advertisement

Doklady Physical Chemistry

, Volume 480, Issue 1, pp 67–70 | Cite as

Biological Xenogenic Vessel Prostheses: Effect of H2O/CO2 and EtOH Media on the Structure and Mechanical Properties of the Bovine Jugular Veins

  • I. S. Chashchin
  • N. P. Bakuleva
  • T. E. Grigor’ev
  • S. V. Krasheninnikov
  • C. C. Abramchuk
  • K. M. Dzhidzhikhiya
Physical Chemistry

Abstract

The effect of the H2O/CO2 and EtOH/CO2 media at pressures and temperatures corresponding to the formation of supercritical (sc) carbon dioxide on the structure and mechanical properties of bovine jugular veins was studied for the first time. Treatment of bovine jugular veins in an sc-CO2 + ethanol or sc-CO2 + water medium considerably devitalized the tissue and increased the tissue elasticity, which allows considering the treated veins as promising vascular grafts with expected high capacity to suppress calcification and good hemodynamic properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurobe, H., Maxfield, M.W., Breuer, C.K., and Shinoka, T., Stem Cells Transl. Med., 2012, vol. 1, pp. 566–571.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Torikai, K., Ichikawa, H., Hirakawa, K., Matsumiya, G., Kuratani, T., and Iwai, S., Clin. Hemorheol. Microcirc., 2011, vol. 49, pp. 357–74.Google Scholar
  3. 3.
    Teebken, O.E. and Haverich, A., Eur. J. Vasc. Endovasc. Surg., 2002, vol. 23, pp. 475–485.CrossRefPubMedGoogle Scholar
  4. 4.
    Melchiorri, A.J., Hibino, N., Best, C.A., Yi, T., Lee, Y.U., and Kraynak, C.A., Adv. Health. Mater., 2016, vol. 5, pp. 319–325.CrossRefGoogle Scholar
  5. 5.
    Hopkins, R.A., Circulation, 2006, vol. 114, pp. 261–264.CrossRefPubMedGoogle Scholar
  6. 6.
    Golomb, G., Schoen, F.J., Smith, M.S., Linden, J., Dixon, M., and Levy, R.J., Am. J. Pathol., 1987, vol. 127, pp. 122–130.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Simionescu, D.T., Expert. Opin. Biol. Ther., 2004, vol. 4, pp. 1971–1985.CrossRefPubMedGoogle Scholar
  8. 8.
    Keane, T.J., Swinehart, I.T., and Badylak, S.F., Methods, 2015, vol. 84, pp. 25–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Quirk, R.A., France, R.M., Shakesheff, K.M., and Howdle, S.M., Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, p. 313.CrossRefGoogle Scholar
  10. 10.
    Sawada, K., Terada, D., Yamaoka, T., Kitamura, S., and Fujisato, T., J. Chem. Tech. Biotech., 2008, vol. 83, no. 6, pp. 943–949.CrossRefGoogle Scholar
  11. 11.
    Kashin, A.S. and Ananikov, V.P., Russ. Chem. Bull. Int. Ed., 2011, vol. 60, pp. 2602–2607.CrossRefGoogle Scholar
  12. 12.
    Bowes, J.H. and Kenten, R.H., Biochem. J., 1948, vol. 43, no. 3, pp. 365–372.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vahidkhah, K., Cordasco, D., Abbasi, M., Ge, L., Tseng, E., Bagchi, P., and Azadani, A.N., Ann. Biomed. Eng., 2016, vol. 44, no. 9, pp. 2724–2736.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. S. Chashchin
    • 1
  • N. P. Bakuleva
    • 2
  • T. E. Grigor’ev
    • 1
    • 3
  • S. V. Krasheninnikov
    • 3
  • C. C. Abramchuk
    • 1
  • K. M. Dzhidzhikhiya
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Bakulev Scientific Center of Cardiovascular SurgeryMinistry of Health of RussiaMoscowRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations