Advertisement

Doklady Physical Chemistry

, Volume 478, Issue 2, pp 35–38 | Cite as

Cathode Materials for Hybrid Supercapacitors Based on Ozonated Reduced Graphene Oxide

  • S. D. Varfolomeev
  • V. N. Kalinichenko
  • S. P. Chervonobrodov
  • S. B. Bibikov
  • S. D. Razumovskii
  • V. V. Podmasteryev
  • A. A. Maltsev
  • D. Yu. Gryzlov
  • V. P. Melnikov
Physical Chemistry
  • 15 Downloads

Abstract

A carbon material capable of reversible electrochemical oxidation and reduction with relatively high electrical conductivity was prepared by ozonation of thermally reduced graphene oxide. The specific discharge energy for such materials used in lithium ion electrochemical cell cathodes with non-aqueous electrolytes (LP-71) can reach 540 W h/kg at 40 mA/g current, while the average specific discharge power is 11.5 kW/kg at 5 A/g current. The specific charge after 2500 charge/discharge cycles at 5 A/g current was at a level of 93% of the initial value. The obtained materials appear promising for the design of new electricity storage systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conway, B.E., Electrochemical Supercapacitors, New York: Kluwer Academic Plenum Publishers Scientific Fundamentals and Technological Applications, 1999.CrossRefGoogle Scholar
  2. 2.
    Tan, Y.B. and Lee, J.-M., J. Mater. Chem. A, 2013, vol. 1, pp. 14814–14843.CrossRefGoogle Scholar
  3. 3.
    Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., Inorganics, 2014, vol. 2, pp. 132–154.CrossRefGoogle Scholar
  4. 4.
    Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., and Bao, Z., Nano Lett., 2011, vol. 11, pp. 4438–4442.CrossRefGoogle Scholar
  5. 5.
    Wang, H., Liang, Y., Mirfakhrai, T., Chen, Z., Casalongue, H.S., and Dai, H., Nano Res., 2011, vol. 4, pp. 729–736.CrossRefGoogle Scholar
  6. 6.
    Ignatova, A.A. and Yarmolenko, O.V., Altern. Energ. Ekol., 2015, no. 08/09 (172/173), pp. 112–138.Google Scholar
  7. 7.
    Haupler, B., Wild, A., and Schubert, U.S., Adv. Energ. Mater., 2015, pp. 1402034–1402067.Google Scholar
  8. 8.
    Marinhoa, B., Ghislandia, M., Tkalyac, E., Koningc, C.E., and Witha, G., Powder Technol., 2012, vol. 221, pp. 351–358.CrossRefGoogle Scholar
  9. 9.
    Razumovskii, S.D., Rakovski, S.K., Shopov, D.M., and Zaikov, G.E., Ozon and Its Reactions with Organic Compounds, Sofia: Publishing House of Bulgarian Academy of Sciences, 1983.Google Scholar
  10. 10.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Radek Zboril, R., and Kim, K.S., Chem. Rev., 2012, vol. 112, no. 11, pp. 6156–6214.CrossRefGoogle Scholar
  11. 11.
    Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.CrossRefGoogle Scholar
  12. 12.
    D’yachkova, T.P. and Tkachev, A.G., Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok (Methods of Functionalization and Modificationm of Carbon Nanotubes), Moscow: Izdatel’skii dom “Spektr,” 2013.Google Scholar
  13. 13.
    Choi, D., Wang, D., Viswanathan, V.V., Bae, I.T., Wang, W., Nie, Z., and Duong, T., Electrochem. Commun., 2010, vol. 12, no. 3, pp. 378–381.CrossRefGoogle Scholar
  14. 14.
    Kim, H., Park, K.-Y., Hong, J., and Kang, K., Sci. Rep., 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. D. Varfolomeev
    • 1
    • 2
  • V. N. Kalinichenko
    • 3
  • S. P. Chervonobrodov
    • 4
  • S. B. Bibikov
    • 1
  • S. D. Razumovskii
    • 1
  • V. V. Podmasteryev
    • 1
  • A. A. Maltsev
    • 1
  • D. Yu. Gryzlov
    • 5
  • V. P. Melnikov
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.LLC KongranMoscowRussia
  5. 5.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations