Advertisement

Doklady Physical Chemistry

, Volume 478, Issue 2, pp 39–41 | Cite as

Formation of Dissipative Structures in an Amorphous Film

  • V. B. Malkov
  • I. V. Nikolaenko
  • G. P. Shveikin
  • V. G. Pushin
  • A. V. Malkov
  • O. V. Malkov
  • B. V. Shul’gin
Physical Chemistry
  • 18 Downloads

Abstract

The formation of nanothin spatial dissipative structures (SDSs) of hexagonal selenium with elastic rotational curvature of the lattice about [001] in an amorphous film was considered. It was established that nanothin SDSs form in thermal gradient treatment of an amorphous film by one-side heating of its lower surface at T = 453 K. The state of pseudo-single crystal, which precedes the formation of a nanothin SDS in an amorphous film, is a state with a high concentration of vacancies. Under the action of the temperature difference ΔT, vacancies and selenium atoms undergo thermal diffusion in the direction perpendicular to the surface of the pseudo-single crystal. It was shown that, when ΔT reaches critical values, there is a transition from the structure of a pseudo-single crystal to the structure of a rhombic nanothin SDS of hexagonal selenium. The heat flux through the nanothin SDS in the direction perpendicular to its surface ensures the entropy export to the environment. After the thermal gradient treatment of the amorphous film, the nanothin SDS is quenched by cooling it in air; in this process, there is quenching of nonequilibrium structural defects—atoms and vacancies displaced from equilibrium positions. The quenching makes the nanothin SDS stable. The formation of nanothin SDSs of hexagonal selenium with elastic rotational curvature of the lattice about [001] in an amorphous film occurs under conditions satisfying the theory of the formation of dissipative structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kveglis, L.I. and Kashkin, V.B., Dissipativnye Struktury v tonkikh nanokristallicheskikh plenkakh (Dissipative Structures in Thin Nanocrystalline films), Krasnoyarsk: Izd. “Prospekt,” 2015.Google Scholar
  2. 2.
    Shklovskii, V.A. and Kuz’menko, V.M., Usp. Fiz. Nauk, 1989, vol. 157, no. 2, pp. 311–338.CrossRefGoogle Scholar
  3. 3.
    Prilepo, V.L., Extended Abstract of Candidate Dissertation in Physic and Mathematics (Sverdlovsk, 1985).Google Scholar
  4. 4.
    De Groot, S.R., Thermodynamics of Irreversible Processes, 1952. Translated under the title Termodinamika neobratimykh protsessov, Moscow: Gos. Izd. Tekhnikoteoreticheskoi Literatury, 1956.Google Scholar
  5. 5.
    Zel’tser, I.A., Karabanov, A.S., and Moos, E.N., Fiz. Tverd. Tela, 2005, vol. 47, no. 11, pp. 1921–1926.Google Scholar
  6. 6.
    Damask, A.C. and Dienes, G.J., Point Defects in Metals, Gordon and Breach, 1963. Translated under the title Tochechnye defekty v metallakh, Moscow: Mir, 1966.Google Scholar
  7. 7.
    Askhabov, A.M., Kristallogenezis i evolyutsiya sistemy “kristall-sreda” (Crystal Genesis and Evolution of the Crystal–Medium System), St. Petersburg: Nauka, 1993.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. B. Malkov
    • 1
  • I. V. Nikolaenko
    • 2
    • 4
  • G. P. Shveikin
    • 2
  • V. G. Pushin
    • 3
  • A. V. Malkov
    • 1
  • O. V. Malkov
    • 1
  • B. V. Shul’gin
    • 4
  1. 1.Institute of High-Temperature ElectrochemistryUral Division, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Solid State ChemistryUral Division, Russian Academy of SciencesYekaterinburgRussia
  3. 3.Mikheev Institute of Metal PhysicsUral Branch, Russian Academy of SciencesYekaterinburgRussia
  4. 4.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations