Advertisement

Doklady Physical Chemistry

, Volume 476, Issue 1, pp 149–152 | Cite as

Relationship between the deformability and fractographic characteristics of fracture surfaces of epoxy polymers

  • V. O. Startsev
  • M. P. Lebedev
  • A. S. Frolov
  • T. A. Nizina
Physical Chemistry
  • 19 Downloads

Abstract

The deformation properties of epoxy polymers during natural aging in a tepid climate were studied by performing quantitative fractography and investigating the relief of fracture surfaces of epoxy polymers by mechanical tensile testing. The brightness in fracture micrographs correlated with the elongation at fracture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantwell, W.J. and Kausch, H.H., in Chemistry and Technology of Epoxy Resins, Ellis, B., Ed., London: Chapman&Hall, 1993, pp. 145–175.Google Scholar
  2. 2.
    D’Almeida, J.R.M. and de Menezes, G.W., Monteiro, S.N., Mater. Res., 2003, vol. 3, no. 3, pp. 415–420.CrossRefGoogle Scholar
  3. 3.
    Bartenev, G.M., Prochnost’ i mekhanizm razrusheniya polimerov (Strength and Fracture Mechanism of Polymers), Moscow: Khimiya, 1984.Google Scholar
  4. 4.
    Ward, I.M. and Sweeney, J., Mechanical Properties of Solid Polymers, New York: Wiley, 2013.Google Scholar
  5. 5.
    Tkachev, A.G., Kharitonov, A.P., Simbirtseva, G.V., Kharitonova, L.N., Blokhin, A.N., D’yachkova, T.P., Druzhinina, V.N., Maksimkin, A.V., Chukov, D.I., and Cherdyntsev, V.V., Sovrem. Problemy Nauki Obrazov., 2014, no. 2, p. 8.Google Scholar
  6. 6.
    Deev, I.S. and Kobets, L.P., Vysokomol. Soedin., Ser. A, 1999, vol. 38, no. 4, pp. 627–633.Google Scholar
  7. 7.
    Stukhlyak, P.D., Buketov, A.V., Panin, S.V., Marushchak, P.O., Moroz, K.M., Poltoranin, M.A., Vukherer, T., Kornienko, L.A., and Lyukshin, B.A., Fiz. Mezomekh., 2014, vol. 17, no. 2, pp. 65–83.Google Scholar
  8. 8.
    Hull, D., J. Mater. Sci., 1996, vol. 31, pp. 4483–4492.CrossRefGoogle Scholar
  9. 9.
    Atif, R. and Inam, F., World J. Eng. Technol., 2016, vol. 4, pp. 335–360.CrossRefGoogle Scholar
  10. 10.
    Munoz, E. and Garcia-Manrique, J.A., Int. J. Polym. Sci., 2015, ID 390275.Google Scholar
  11. 11.
    Startsev, O.V., Perepechko, I.I., Startseva, L.T., and Mashinskaya, G.P., Vysokomol. Soedin., Ser. B, 1983, vol. 25, no. 6, pp. 457–461.Google Scholar
  12. 12.
    Nogueira, P., Ramirez, C., Torres, A., Abad, M.J., Cano, J., Lopez, J., Lopez-Bueno, I., and Barral, L., J. Appl. Polym. Sci., 2001, vol. 80, pp. 71–80.CrossRefGoogle Scholar
  13. 13.
    Startsev, O.V., Polym. Yearbook, 1994, pp. 91–110.Google Scholar
  14. 14.
    Startsev, V.O., Nizina, T.A., and Startsev, O.V., Int. Polym. Sci. Technol., 2016, vol. 43, no. 8, pp. 45–49.Google Scholar
  15. 15.
    Startsev, O.V., Medvedev, I.M., Polyakov, V.V., and Belyaev, I.A., Protect. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, pp. 1198–1203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. O. Startsev
    • 1
  • M. P. Lebedev
    • 2
  • A. S. Frolov
    • 1
  • T. A. Nizina
    • 3
  1. 1.All-Russian Research Institute of Aviation MaterialsState Scientific Center of the Russian FederationMoscowRussia
  2. 2.Larionov Institute of Physicotechnical Problems of the North, Siberian BranchRussian Academy of SciencesYakutskRussia
  3. 3.Ogarev Mordovia State UniversitySaranskRussia

Personalised recommendations