Advertisement

Doklady Physical Chemistry

, Volume 471, Issue 1, pp 181–184 | Cite as

Electrochemical synthesis of cobalt polyporphine films

  • O. I. Istakova
  • D. V. KonevEmail author
  • C. H. Devillers
  • M. A. Vorotyntsev
  • A. S. Zyubin
  • E. M. Antipov
  • S. M. Aldoshin
Physical Chemistry

Abstract

A method for modification of the inert electrode surface with an electroactive polymeric film containing the CoN4 catalytic site has been suggested and approved. The described approach affords the maximal content of the metal porphine moiety per unit weight of the coating. The classical method of introduction of an ion into the porphine macrocycle has been replaced by electrochemical polarization of an electrode with a metallated film in a dilute solution. The metalation efficiency has been demonstrated by the presence of changes in the current–voltage and spectral characteristics of the resulting polymeric films of the unsubstituted porphine pH2P and cobalt polyporphine pCoP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, S., Diercks, C.S., Zhang, Y.B., et al., Science, 2015, vol. 349, pp. 1208–1213.CrossRefGoogle Scholar
  2. 2.
    Jester, C.P., Rocklin, R.D., and Murray, R.W., J. Electrochem. Soc., 1980, vol. 127, pp. 1979–1985.CrossRefGoogle Scholar
  3. 3.
    Hebie, S., Devillers, C.H., Fournier, S., and Lucas, D., ChemElectroChem, 2016, vol. 3, no. 1, pp. 45–50.CrossRefGoogle Scholar
  4. 4.
    Tarasevich, M.R. and Bogdanovskaya, V.A., Russ. Chem. Rev., 1987, vol. 56, pp. 653–669.CrossRefGoogle Scholar
  5. 5.
    Armengaud, C., Moisy, P., Bedioui, F., et al., J. Electroanal. Chem. Interfacial Electrochem., 1990, vol. 277, pp. 197–211.CrossRefGoogle Scholar
  6. 6.
    Walter, M.G. and Wamser, C.C., MRS Proc., 2007, vol. 1013, pp. 1013–Z04-07.Google Scholar
  7. 7.
    Dogutan, D.K., Ptaszek, M., and Lindsey, J.S., Org. Chem., 2007, vol. 72, pp. 5008–5011.CrossRefGoogle Scholar
  8. 8.
    Konev, D.V., Devillers, C.H., Lizgina, K.V., et al., Electrochim. Acta, 2014, vol. 122, pp. 3–10.CrossRefGoogle Scholar
  9. 9.
    Ji, Y., Li, Z., Wang, S., et al., Int. J. Hydrogen Energ., 2010, vol. 35, pp. 8117–8121.CrossRefGoogle Scholar
  10. 10.
    Bennett, J.E. and Malinski, T., Chem. Mater., 1991, vol. 3, pp. 490–495.CrossRefGoogle Scholar
  11. 11.
    Di Natale, C., Paolesse, R., Burgio, M., et al., Anal. Chim. Acta, 2004, vol. 513, pp. 49–56.CrossRefGoogle Scholar
  12. 12.
    Paolesse, R., Di Natale, C., Burgio, M., et al., Sensor. Actuat. B-Chem., 2003, vol. 95, pp. 400–405.CrossRefGoogle Scholar
  13. 13.
    Rolle, S.D., Konev, D.V., Devillers, C.H., et al., Electrochim. Acta, 2016, vol. 204, pp. 276–286.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. I. Istakova
    • 1
    • 2
  • D. V. Konev
    • 1
    • 2
    Email author
  • C. H. Devillers
    • 3
  • M. A. Vorotyntsev
    • 1
    • 2
    • 3
    • 4
  • A. S. Zyubin
    • 1
  • E. M. Antipov
    • 2
    • 4
  • S. M. Aldoshin
    • 1
    • 4
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of ScienceChernogolovka, Moscow oblastRussia
  2. 2.Mendeleev Chemical Technology University of RussiaMoscowRussia
  3. 3.Institut de Chimie Moléculaire de I’Université de BourgogneDijonFrance
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations