Advertisement

Doklady Physical Chemistry

, Volume 468, Issue 1, pp 76–79 | Cite as

Oxidation state and coordination environment of uranium in sodium iron aluminophosphate glasses

  • S. V. Stefanovsky
  • O. I. Stefanovskaya
  • V. Yu. Murzin
  • A. A. Shiryaev
  • B. F. Myasoedov
Physical Chemistry

Abstract

An analysis of the X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) of uranium determined the oxidation state and coordination environment of uranium atoms in glasses containing 40 mol % Na2O, 10 mol % Al2O3, 10 mol % Fe2O3, and 40 mol % P2O5 to which uranium oxides were added to a concentration of 50 wt % (above 100%). If the added amount of UO2 was small, uranium occurred as U(IV) in a near-octahedral oxygen environment with an average U–O distance in the first coordination sphere of 2.25 Å. At higher concentrations of uranium oxides introduced both as UO2 and as UO3, uranium occurred as U(V) and U(VI); the first coordination sphere is split; shorter (~1.7–1.8 Å) and longer (2.2–2.3 Å) distances were observed, which corresponded to the axial and equatorial U–O bonds in uranyl ions, respectively; and the redox equilibrium shifted toward U(VI). The glass with the maximal (~33 wt %) UO3 concentration contained mainly U(VI). The existence of low-valence uranium species can be related to the presence of Fe(II) in glasses. The second coordination sphere of uranium manifests itself only at high concentrations of uranium oxides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veal, B.W., Mundy, J.N., and Lam, D.J., Handbook on the Physics and Chemistry of the Actinides, London: Elsevier, 1987, pp. 271–309.Google Scholar
  2. 2.
    Yudintsev, S.V., Omel’yanenko, B.I., and Lyubomilova, G.V., Geokhimiya, 1990, no. 9, pp. 1291–1297.Google Scholar
  3. 3.
    Farges, F., Ponader, C.W., Calas, G., and Brown, G.E., Jr., Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 4205–4220.CrossRefGoogle Scholar
  4. 4.
    Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.CrossRefGoogle Scholar
  5. 5.
    Fabian, M., Proffen, T., Ruett, U., et al., J. Phys.: Condens. Matter, 2010, vol. 22, p. 404206.Google Scholar
  6. 6.
    Schreiber, H.D., Balazs, G.B., and Williams, B.J., J. Am. Ceram. Soc., 1982, vol. 65, pp. 449–453.CrossRefGoogle Scholar
  7. 7.
    Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Waste), Vashman, A.A., Polyakov, A.S., Ed., Moscow: TsNIIAtominform, 1997.Google Scholar
  8. 8.
    Karabulut, M., Marasinghe, G.K., Ray, C.S., et al., J. Mater. Res., 2000, vol. 15, no. 9, pp. 1972–1984.CrossRefGoogle Scholar
  9. 9.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, pp. 95–98.CrossRefGoogle Scholar
  10. 10.
    Ravel, B. and Newville, M., J. Synchrotron Rad., 2005, vol. 12, pp. 537–541.CrossRefGoogle Scholar
  11. 11.
    Newville, M., J. Phys.: Conf. Ser., 2013, vol. 430, pp. 012007-1–012007-7.Google Scholar
  12. 12.
    Jollivet, P., Den Auwer, C., and Simoni, E., J. Nucl. Mater., 2002, vol. 301, pp. 142–152.CrossRefGoogle Scholar
  13. 13.
    Glazkova, Ya.S., Kalmykov, S.N., Presnyakov, I.A., et al., Dokl. Phys. Chem., 2015, vol. 463, no. 1, pp. 145–149.CrossRefGoogle Scholar
  14. 14.
    Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., et al., J. Non-Cryst. Solids, 2015, vol. 425, pp. 138–145.CrossRefGoogle Scholar
  15. 15.
    Shannon, R.D., SHELXS-86, Acta Crystallogr., Sect. A: Found. Crystallogr., 1976, vol. 32, pp. 751–767.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Stefanovsky
    • 1
  • O. I. Stefanovskaya
    • 1
  • V. Yu. Murzin
    • 2
  • A. A. Shiryaev
    • 1
  • B. F. Myasoedov
    • 1
    • 3
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Center “Kurchatov Institute,”MoscowRussia
  3. 3.Vernadskii Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations