Skip to main content

Polymerization of 2-(Perfluorohexyl)ethyl Methacrylate in the Presence of 2-Cyano-2-propyl Dithiobenzoate in Supercritical CO2

Abstract

The radical polymerization of 2-(perfluorohexyl)ethyl methacrylate (FHEMA) initiated by azobis(isobutyronitrile) in the presence of a commercially available chain transfer agent, 2-cyano-2-propyl dithiobenzoate, carried out in trifluorotoluene (TFT) or in supercritical carbon dioxide (scCO2) was studied for the first time. The conditions were found under which the FHEMA polymerization in TFT or in scCO2 proceeds under homogeneous conditions with reversible chain transfer via the addition–fragmentation mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Mitra, D., Kang, E.-T., and Neoh, K.G., ACS Appl. Polym. Mater., 2021, vol. 3, pp. 2233–2263. https://doi.org/10.1021/acsapm.1c00125

    CAS  Article  Google Scholar 

  2. Chekurov, K.E., Barabanova, A.I., Blagodatskikh, I.V., Lokshin, B.V., Kondratenko, M.S., Gallyamov, M.O., Peregudov, A.S., and Khokhlov, A.R., J. Appl. Polym. Sci., 2021, vol. 138, art. 49714. https://doi.org/10.1002/app.49714

  3. Chekurov, K.E., Barabanova, A.I., Blagodatskikh, I.V., Lokshin, B.V., Peregudov, A.S., Abramchuk, S.S., and Khokhlov, A.R., Dokl. Chem., 2019, vol. 484, no. 2, pp. 33–36. https://doi.org/10.1134/S0012500819020010

    CAS  Article  Google Scholar 

  4. Zefirov, V.V., Lubimtsev, N.A., Stakhanov, A.I., Elmanovich, I.V., Kondratenko, M.S., Lokshin, B.V., Gallyamov, M.O., and Khokhlov, A.R., J. Supercrit. Fluids, 2018, vol. 133, no. 1, pp. 30–37. https://doi.org/10.1016/j.supflu.2017.09.020

    CAS  Article  Google Scholar 

  5. Yampolskii, Yu.P., Belov, N.A., and Alentiev, A.Yu., Russ. Chem. Rev., 2019, vol. 88, no. 4, pp. 387–405. https://doi.org/10.1070/RCR4861

    CAS  Article  Google Scholar 

  6. Melnikov, P.V., Aleksandrovskaya, A.Yu., Safonov, A.V., Popova, N.M., Spitsin, B.V., Naumova, A.O., and Zaitsev, N.K., Mendeleev Commun., 2020, vol. 30, pp. 453–455. https://doi.org/10.1016/j.mencom.2020.07.015

    CAS  Article  Google Scholar 

  7. Arita, T., Beuermann, S., Buback, M., and Vana, P., Macromol. Mater. Eng., 2005, vol. 290, pp. 283–293. https://doi.org/10.1002/mame.200400274

    CAS  Article  Google Scholar 

  8. Alekseev, E.S., Alentiev, A.Yu., Belova, A.S., Bogdan, V.I., Bogdan, T.V., Bystrova, A.V., Gafarova, E.R., Golubeva, E.N., Grebenik, E.A., Gromov, O.I., Davankov, V.A., Zlotin, S.G., Kiselev, M.G., Koklin, A.E., Kononevich, Yu.N., Lazhko, A.E., Lunin, V.V., Lyubimov, S.E., Martyanov, O.N., Mishanin, I.I., Muzafarov, A.M., Nesterov, N.S., Nikolaev, A.Yu., Oparin, R.D., Parenago, O.O., Parenago, O.P., Pokusaeva, Ya.A., Ronova, I.A., Solovieva, A.B., Temnikov, M.N., Timashev, P.S., Turova, O.V., Filatova, E.V., Philippov, A.A., Chibiryaev, A.M., and Shalygin, A.S., Russ. Chem. Rev., 2020, vol. 89, no. 12, pp. 1337–1427. https://doi.org/10.1070/RCR4932

    CAS  Article  Google Scholar 

  9. DeSimone, J., Guan, M.Z., and Elsbernd, C.S., Science, 1992, vol. 257, pp. 945–947. https://doi.org/10.1126/science.257.5072.945

    CAS  Article  PubMed  Google Scholar 

  10. Combes, J.R., Guan, Z., and DeSimone, J.M., Macromolecules, 1994, vol. 27, pp. 865–867. https://doi.org/10.1021/ma00081a036

    CAS  Article  Google Scholar 

  11. Du, L., Kelly, J.Y., Roberts, G.W., and DeSimone, J.M., J. Supercrit. Fluids, 2009, vol. 47, pp. 447–457. https://doi.org/10.1016/j.supflu.2008.11.011

    CAS  Article  Google Scholar 

  12. Jenkins, A.D., Jones, R.G., and Moad, G., Pure Appl. Chem., 2009, vol. 82, pp. 483–491. https://doi.org/10.1351/PAC-REP-08-04-03

    CAS  Article  Google Scholar 

  13. Wang, X, Shen, L., and An, Z., Prog. Polym. Sci., 2018, vol. 83, pp. 1–27. https://doi.org/10.1016/j.progpolymsci.2018.05.003

    CAS  Article  Google Scholar 

  14. Moad, G., Rizzardo, E., and Thang, S.H., Aust. J. Chem., 2012, vol. 65, pp. 985–1076. https://doi.org/10.1071/CH12295

    CAS  Article  Google Scholar 

  15. Grishin, D.F. and Grishin, I.D., Russ. Chem. Rev., 2021, vol. 90, no. 2, pp. 231–264. https://doi.org/10.1070/RCR4964

    CAS  Article  Google Scholar 

  16. Li, G., Xu, A., Geng, B., Yang, S., Wu, G., and Zhang, S., J. Fluorine Chem., 2014, vol. 165, pp. 132–137. https://doi.org/10.1016/j.jfluchem.2014.06.029

    CAS  Article  Google Scholar 

  17. Huo, M., Zeng, M., Li, D., Liu, L., Wei, Y., and Yuan, J., Macromolecules, 2017, vol. 50, no. 20, pp. 8212–8220. https://doi.org/10.1021/acs.macromol.7b01629

    CAS  Article  Google Scholar 

  18. Huo, M., Zhang, Y., Zeng, M., Liu, L., Wei, Y., and Yuan, J., Macromolecules, 2017, vol. 50, no. 20, pp. 8192–8201. https://doi.org/10.1021/acs.macromol.7b01437

  19. Wang, C., Li, X., and Deng, H., ACS Macro Lett., 2019, vol. 8, no. 4, pp. 368–373. https://doi.org/10.1021/acsmacrolett.9b00178

    CAS  Article  PubMed  Google Scholar 

  20. Grigoreva, A., Polozov, E., and Zaitsev, S., J. Fluorine Chem., 2020, vol. 232. https://doi.org/10.1016/j.jfluchem.2020.109484

  21. Eberhardt, M. and Theato, P., Macromol. Rapid Commun., 2005, vol. 26, no. 18, pp. 1488–1493. https://doi.org/10.1002/marc.200500390

  22. Mya, K.Y., Lin, E.M.J., Gudipati, C.S., Gose, H.B.A.S., and He, C., J. Phys. Chem. B, 2010, vol. 114, no. 28, pp. 9128–9134. https://doi.org/10.1021/jp102919t

  23. Chen, J.G., Feng, X., Wang, M.X., Shen, S.K., Li, Y., Wang, W., Liu, Z.T., Liu, Z.W., Jiang, J.Q., and Lu, J., J. Polym. Sci. A. Polym. Chem., 2015, vol. 54, pp. 825–834. https://doi.org/10.1002/pola.27919

  24. Mawson, S., Johnston, K.P., Combes, J.R., and DeSimone, J.M., Macromolecules, 1995, vol. 28, pp. 3182–3191. https://doi.org/10.1021/ma00113a021

    CAS  Article  Google Scholar 

  25. Girard, E., Marty, J.-D., Ameduri, B., and Destarac, M., ACS MacroLett., 2012, vol. 1, p. 270. https://doi.org/10.1021/mz2001143

    CAS  Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 17-13-01359-P). Characterization of the obtained compounds was supported by the Ministry of Science and Higher Education of the Russian Federation and performed using scientific equipment of the Center for Investigation of Molecular Structure of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Barabanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chekurov, K.E., Barabanova, A.I., Blagodatskikh, I.V. et al. Polymerization of 2-(Perfluorohexyl)ethyl Methacrylate in the Presence of 2-Cyano-2-propyl Dithiobenzoate in Supercritical CO2. Dokl Chem 503, 57–62 (2022). https://doi.org/10.1134/S0012500822040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500822040012

Keywords:

  • 2-(perfluorohexyl)ethyl methacrylate
  • RAFT polymerization
  • scCO2