Skip to main content

Organic Polyradicals Based on Acenes. Computational Modeling

Abstract

New organic polyspin molecules constructed on the basis of acenes and stable radicals (1,2,3,5-di-thiadiazolyl, 1,5-dimethyl-6-oxoverdazyl, and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) have been predicted by means of quantum-chemical calculations. Among the studied tetraradical systems, the structures characterized by antiferromagnetic exchange interactions between the unpaired electrons of the radical substituents and ferromagnetic coupling of paramagnetic centers of the acenes and radical groups have been revealed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ratera, I. and Veciana, J., Chem. Soc. Rev., 2012, vol. 41, pp. 303–349. https://doi.org/10.1039/C1CS15165G

    CAS  Article  PubMed  Google Scholar 

  2. Jousselin-Oba, T., Mamada, M., Marrot, J., Maignan, A., Adachi, C., Yassar, A., and Frigoli, M., J. Am. Chem. Soc., 2019, vol. 141, pp. 9373–9381. https://doi.org/10.1021/jacs.9b03488

    CAS  Article  PubMed  Google Scholar 

  3. Herrmann, C., Solomon, G.C., and Ratner, M.A., J. Am. Chem. Soc., 2010, vol. 132, pp. 3682–3684. https://doi.org/10.1021/ja910483b

    CAS  Article  PubMed  Google Scholar 

  4. Zimmerman, P.M., Bell, F., Casanova, D., and Head-Gordon, M., J. Am. Chem. Soc., 2011, vol. 133, pp. 19944–19952. https://doi.org/10.1021/ja208431r

    CAS  Article  PubMed  Google Scholar 

  5. Smith, M.B. and Michl, J., Chem. Rev., 2010, vol. 110, pp. 6891–6936. https://doi.org/10.1021/cr1002613

    CAS  Article  PubMed  Google Scholar 

  6. Berg, O., Chronister, E.L., Yamashita, T., Scott, G.W., Sweet, R.M., and Calabrese, J., J. Phys. Chem. A, 1999, vol. 103, pp. 2451–2459. https://doi.org/10.1021/jp984066g

    CAS  Article  Google Scholar 

  7. Abe, M., Chem. Rev., 2013, vol. 113, pp. 7011–7088. https://doi.org/10.1021/cr400056a

    CAS  Article  PubMed  Google Scholar 

  8. Tretyakov, E.V. and Ovcharenko, V.I., Russ. Chem. Rev., 2009, vol. 78, no. 11, pp. 1051–1093. https://doi.org/10.1070/RC2009v078n11ABEH004093

    CAS  Article  Google Scholar 

  9. Tretyakov, E.V., Zhivetyeva, S.I., Petunin, P.V., Gorbunov, D.E., Gritsan, N.P., Bagryanskaya, I.Y., Bogomyakov, A.S., Postnikov, P.S., Kazantsev, M.S., Trusova, M.E., Shundrina, I.K., Zaytseva, E.V., Parkhomenko, D.A., Bagryanskaya, E.G., and Ovcharenko, V.I., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, no. 46, pp. 20704–20710. https://doi.org/10.1002/anie.202010041

    CAS  Article  Google Scholar 

  10. Slota, M., Keerthi, A., Myers, W.K., Tretyakov, E., Baumgarten, M., Ardavan, A., Sadeghi, H., Lambert, C.J., Narita, A., Mullen, K., and Bogani, L., Nature, 2018, vol. 557, pp. 691–695. https://doi.org/10.1038/s41586-018-0154-7

    CAS  Article  PubMed  Google Scholar 

  11. Tret'yakov, E.V., Ovcharenko, V.I., Terent’ev, A.O., Krylov, I.B., Magdesieva, T.V., Mazhukin, D.G., and Gritsan, N.P., Russ. Chem. Rev., 2022, vol. 91, no. 2, RCR5025. https://doi.org/10.1070/RCR5025

    Article  Google Scholar 

  12. Tretyakov, E.V., Petunin, P.V., Zhivetyeva, S.I., Gorbunov, D.E., Gritsan, N.P., Fedin, M.V., Stass, D.V., Samoilova, R.I., Bagryanskaya, I.Yu., Shundrina, I.K., Bogomyakov, A.S., Kazantsev, M.S., Postnikov, P.S., Trusova, M.E., and Ovcharenko, V.I., J. Am. Chem. Soc., 2021, vol. 143, no. 21, pp. 8164–8176. https://doi.org/10.1021/jacs.1c02938

    CAS  Article  PubMed  Google Scholar 

  13. Gopalakrishna, T.Y., Zeng, W., Lu, X., and Wu, J., Chem. Commun., 2018, vol. 54, pp. 2186–2199. https://doi.org/10.1039/C7CC09949E

    Article  Google Scholar 

  14. Minkin, V.I., Starikov, A.G., Starikova, A.A., Gapurenko, O.A., Minyaev, R.M., and Boldyrev, A.I., Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 1288–1298. https://doi.org/10.1039/C9CP05922A

    CAS  Article  PubMed  Google Scholar 

  15. Ten, Yu. A., Troshkova, N.M., and Tretyakov, E.V., Russ. Chem. Rev., 2020, vol. 89, no. 7, pp. 693–712. https://doi.org/10.1070/RCR4923

    CAS  Article  Google Scholar 

  16. Chapyshev, S.V., Korchagin, D.V., and Misochko, E.Ya., Russ. Chem. Rev., 2021, vol. 90, no. 1, pp. 39–69. https://doi.org/10.1070/RCR4965

    CAS  Article  Google Scholar 

  17. Ovcharenko, V.I. and Kuznetsova, O.V., Russ. Chem. Rev., 2020, vol. 89, no. 7, pp. 1261–1273.https://doi.org/10.1070/RCR4981

    CAS  Article  Google Scholar 

  18. Chernick, E.T., Casillas, R., Zirzlmeier, J., Gardner, D.M., Gruber, M., Kropp, H., Meyer, K., Wasielewski, M.R., Guldi, D.M., and Tykwinski, R.R., J. Am. Chem. Soc., 2015, vol. 137, no. 2, pp. 857–863. https://doi.org/10.1021/ja510958k

    CAS  Article  PubMed  Google Scholar 

  19. Ito, A., Hinoshita, M., Kato, K., and Teki, Y., Chem. Lett., 2016, vol. 45, pp. 1324–1326. https://doi.org/10.1246/cl.160697

    CAS  Article  Google Scholar 

  20. Shimizu, A., Ito, A., and Teki, Y., Chem. Commun., 2016, vol. 52, pp. 2889–2892. https://doi.org/10.1039/C5CC09481J

    CAS  Article  Google Scholar 

  21. Kawanaka, Y., Shimizu, A., Shinada, T., Tanaka, R., and Teki, Y., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, pp. 6643–6647. https://doi.org/10.1002/anie.201300595

    CAS  Article  Google Scholar 

  22. Basel, B.S., Hetzer, C., Zirzlmeier, J., Thiel, D., Guldi, R., Hampel, F., Kahnt, A., Clark, T., Guldi, D.M., and Tykwinski, R.R., Chem. Sci, 2019, vol. 10, pp. 3854–3863. https://doi.org/10.1039/C9SC00384C

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Karlsson, J.K.G., Atahan, A., Harriman, A., Tkachenko, N.V., Ward, A.D., Schaberle, F.A., Serpa, C., and Arnaut, L.G., J. Phys. Chem. A, 2021, vol. 125, pp. 1184–1197. https://doi.org/10.1021/acs.jpca.0c09961

    CAS  Article  PubMed  Google Scholar 

  24. Anthony, J.E., Chem. Rev., 2006, vol. 106, pp. 5028–5048. https://doi.org/10.1021/cr050966z

    CAS  Article  PubMed  Google Scholar 

  25. Teki, Y., Toichi, T., and Nakajima, S., Chem.-Eur. J., 2006, vol. 12, pp. 2329–2336. https://doi.org/10.1002/chem.200500981

    CAS  Article  PubMed  Google Scholar 

  26. Bendikov, M., Duong, H.M., Starkey, K., Houk, K.N., Carter, E.A., and Wudl, F., J. Am. Chem. Soc., 2004, vol. 126, pp. 7416–7417. https://doi.org/10.1021/ja048919w

    CAS  Article  PubMed  Google Scholar 

  27. Gao, X., Hodgson, J.L., Jiang, D., Zhang, S.B., Nagase, S., Miller, G.P., and Chen, Z., Org. Lett., 2011, vol. 13, pp. 3316–3319. https://doi.org/10.1021/ol201004u

    CAS  Article  PubMed  Google Scholar 

  28. Becke, A.D., J. Chem. Phys., 1993, vol. 98, pp. 5648–5652. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuse-ria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian-16, Revision A, 03, Wallingford, Gaussian, 2016.

    Google Scholar 

  30. Minkin, V.I., Starikov, A.G., and Starikova, A.A., J. Phys. Chem. A, 2021, vol. 125, no. 30, pp. 6562–6570. https://doi.org/10.1021/acs.jpca.1c02794

    CAS  Article  PubMed  Google Scholar 

  31. Starikova, A.A., Starikov, A.G., Minyaev, R.M., Boldyrev, A.I., and Minkin, V.I., Dokl. Chem., 2018, vol. 478, no. 2, pp. 21–25. https://doi.org/10.1134/S0012500818020015

    CAS  Article  Google Scholar 

  32. Yang, Y., Davidson, E.R., and Yang, W., Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. E5098–E5107. https://doi.org/10.1073/pnas.1606021113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Noodleman, L., J. Chem. Phys., 1981, vol. 74, no. 10, pp. 5737–5743. https://doi.org/10.1063/1.440939

    CAS  Article  Google Scholar 

  34. Shoji, M., Koizumi, K., Kitagawa, Y., Kawakami, T., Yamanaka, S., Okumura, M., and Yamaguchi, K., Chem. Phys. Lett., 2006, vol. 432, no. 1, pp. 343–347. https://doi.org/10.1016/j.cplett.2006.10.023

    CAS  Article  Google Scholar 

  35. Head-Gordon, M., Chem. Phys. Lett., 2003, vol. 372, pp. 508–511. https://doi.org/10.1016/S0009-2614(03)00422-6

    CAS  Article  Google Scholar 

  36. Staroverov, V.N. and Davidson, E.R., Chem. Phys. Lett., 2000, vol. 330, p. 161. https://doi.org/10.1016/S0009-2614(00)01088-5

    CAS  Article  Google Scholar 

  37. Tönshoff, C. and Bettinger, H.F., Chem.-Eur. J., 2021, vol. 27, pp. 3193–3212. https://doi.org/10.1002/chem.202003112

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, project no. 0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Starikov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starikov, A.G., Chegerev, M.G., Starikova, A.A. et al. Organic Polyradicals Based on Acenes. Computational Modeling. Dokl Chem 503, 51–55 (2022). https://doi.org/10.1134/S0012500822030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500822030028

Keywords:

  • acenes
  • stable radicals
  • magnetic properties
  • quantum-chemical calculations