Skip to main content
Log in

Supramolecular Effects and Systems in Catalysis. A Review

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The major areas of development and application of supramolecular catalysis over the past five years are presented. Data on the use of macrocyclic receptors and supramolecular and coordination nanocapsules are analyzed. Advantages and specific features of the systems under study are demonstrated. It is concluded that supramolecular catalysis is an extremely rapidly developing area of modern chemistry. The most promising directions of development of this field are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Scheme 8.
Fig. 4.
Scheme 9.
Fig. 5.
Scheme 10.
Scheme 11.
Scheme 12.
Scheme 13.
Fig. 6.
Scheme 14.
Scheme 15.
Fig. 7.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19.
Scheme 20.
Scheme 21.

Similar content being viewed by others

REFERENCES

  1. Lehn, J.-M., Supramolecular Chemistry. Concepts and Perspectives, Weinheim: VCH, 1995. Translated under the title Supramolekulyarnaya khimiya. Kontseptsii i perspektivy, Novosibirsk: Nauka, 1998.

  2. Hosseini, M.W., Lehn, J.M., Maggiora, L., Mertes, K.B., and Mertes, M.P., J. Am. Chem. Soc., 1987, vol. 109, pp. 537–544. https://doi.org/10.1021/ja00236a036

    Article  CAS  Google Scholar 

  3. Hosseini, M.W., in Bioorganic Chemistry Frontiers, Dugas, H. and Schmidtchen, F.P., Eds., Springer,1993, vol. 3, pp. 67–112. https://doi.org/10.1007/978-3-642-78110-0_3

  4. Di Stefano, S., Capocasa, G., Mandolini, L., Eur. J. Org. Chem., 2020, vol. 2020, pp. 3340–3350. https://doi.org/10.1002/ejoc.201901914

    Article  CAS  Google Scholar 

  5. Sadjadi, S., Organic Nanoreactors. From Molecular to Supramolecular Organic Compounds, Elsevier, 2016. ISBN 978-0-12801-713-5.

    Google Scholar 

  6. Renggli, K., Baumann, P., Langowska, K., Onaca, O., Bruns, N., and Meier, W., Adv. Funct. Mater., 2011, vol. 21, pp. 1241–1259. https://doi.org/10.1002/adfm.201001563

    Article  CAS  Google Scholar 

  7. Sataloff, R.T., Johns, M.M., and Kost, K.M., Nanoreactor Engineering for Life Science and Medicine, ARTECH HOUSE, 2009. ISBN: 978-1-59693-158-9.

    Google Scholar 

  8. Albrecht, M. and Hahn, F.E., Chemistry of Nanocontainers,Springer, 2012. ISBN: 978-3-64228-058-0. https://doi.org/10.1007/978-3-642-28059-7

  9. Koblenz, T.S., Wassenaar, J., and Reek, J.N.H., Chem. Soc. Rev., 2008, vol. 37, pp. 247–262. https://doi.org/10.1039/b614961h

    Article  CAS  PubMed  Google Scholar 

  10. Sinha, I. and Mukherjee, P.S., Inorg. Chem., 2018, vol. 57, pp. 4205–4221. https://doi.org/10.1021/acs.inorgchem.7b03067

    Article  CAS  PubMed  Google Scholar 

  11. Yu, Y., Yang, J.-M., and Rebek, J., Chem., 2020, vol. 6, pp. 1265–1274. https://doi.org/10.1016/j.chempr.2020.04.014

    Article  CAS  Google Scholar 

  12. Wang, K., Jordan, J.H., Hu, X., and Wang, L., Angew. Chem., 2020, vol. 132, pp. 13816–13825. https://doi.org/10.1002/ange.202000045

    Article  Google Scholar 

  13. Effects of Nanoconfinement on Catalysis. Fundamental and Applied Catalysis, Poli, R., Ed., Springer, 2017. https://doi.org/10.1007/978-3-319-50207-6

  14. Tabacchi, G., ChempPhysChem., 2018, vol. 19, pp. 1249– 1297. https://doi.org/10.1002/cphc.201701090

    Article  CAS  Google Scholar 

  15. Gallego, E.M., Paris, C., Cantín, Á., Moliner, M., and Corma, A., Chem. Sci., 2019, vol. 10, pp. 8009–8015. https://doi.org/10.1039/c9sc02477h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viciano-Chumillas, M., Mon, M., Ferrando-Soria, J., Corma, A., Leyva-Pérez, A., Armentano, D., and Pardo, E., Acc. Chem. Res., 2020, vol. 53, pp. 520–531. https://doi.org/10.1021/acs.accounts.9b00609

    Article  CAS  PubMed  Google Scholar 

  17. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., and Su, C.-Y.Y., Chem. Soc. Rev., 2014, vol. 43, pp. 6011–6061. https://doi.org/10.1039/c4cs00094c

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, L., Baslyman, W., Yang, P., and Khashab, N.M., Chem. Commun., 2019, vol. 55, pp. 620–623. https://doi.org/10.1039/C8CC08790C

    Article  CAS  Google Scholar 

  19. Liang, C., Lin, H., Wang, Q., Shi, E., Zhou, S., Zhang, F., Qu, F., and Zhu, G., J. Hazard. Mater., 2020, vol. 381, art. no. 120983. https://doi.org/10.1016/j.jhazmat.2019.120983

    Article  CAS  PubMed  Google Scholar 

  20. Rao, P.C. and Mandal, S., Chem. Asian J., 2019, vol. 14, pp. 4087–4102. https://doi.org/10.1002/asia.201900823

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, L., Liu, X.Q., Jiang, H.L., and Sun, L.B., Chem. Rev., 2017, vol. 117, pp. 8129–8176. https://doi.org/10.1021/acs.chemrev.7b00091

    Article  CAS  PubMed  Google Scholar 

  22. Li, Z., He, T., Gong, Y., and Jiang, D., Acc. Chem. Res., 2020, vol. 53, pp. 1672–1685. https://doi.org/10.1021/acs.accounts.0c00386

    Article  CAS  PubMed  Google Scholar 

  23. Li, J., Zhou, X., Wang, J., and Li, X., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 15394–15406. https://doi.org/10.1021/acs.iecr.9b02708

    Article  CAS  Google Scholar 

  24. Jiang, D. Chem., 2020, vol. 6, pp. 2461–2483. https://doi.org/10.1016/j.chempr.2020.08.024

    Article  CAS  Google Scholar 

  25. Zhao, C., Lyu, H., Ji, Z., Zhu, C., and Yaghi, O.M., J. Am. Chem. Soc., 2020, vol. 142, pp. 14450–14454. https://doi.org/10.1021/jacs.0c07015

    Article  CAS  PubMed  Google Scholar 

  26. Mercuri, G., Giambastiani, G., Di Nicola, C., Pettinari, C., Galli, S., Vismara, R., Vivani, R., Costantino, F., Taddei, M., Atzori, C., Bonino, F., Bordiga, S., Civalleri, B., and Rossin A., Coord. Chem. Rev., 2021, vol. 437, art. no. 213861. https://doi.org/10.1016/j.ccr.2021.213861

    Article  CAS  Google Scholar 

  27. Huang, Z., Yu, H., Wang, L., Liu, X., Lin, T., Haq, F., Vatsadze, S.Z., and Lemenovskiy, D.A., Coord. Chem. Rev., 2021, vol. 430, art. no. 213737. https://doi.org/10.1016/j.ccr.2020.213737

    Article  CAS  Google Scholar 

  28. Gui, B., Lin, G., Ding, H., Gao, C., Mal, A., and Wang, C., Acc. Chem. Res., 2020, vol. 53, pp. 2225–2234. https://doi.org/10.1021/acs.accounts.0c00357

    Article  CAS  PubMed  Google Scholar 

  29. Supramolecular Catalysts: Design, Fabrication and Applications (Series on Chemistry, Energy and Environment), Wang, L. and Su, C.-Y., Eds., Singapore, World Scientific, 2020, vol. 7.

  30. Supramolecular Catalysis, van Leeuwen, P.W.N.M., Ed., Weinheim: Wiley-VCH, 2008.

  31. Baruah, J.B., Principles and Advances in Supramolecular Catalysis, Boca Raton: CRC ppress, 2019. https://doi.org/10.1201/9780429059063

  32. Kataev, E.A. and Müller, C., Tetrahedron, 2014, vol. 70, pp. 137–167. https://doi.org/10.1016/j.tet.2013.11.010

    Article  CAS  Google Scholar 

  33. Mahmudov, K.T., Kopylovich, M.N., da Silva, M.F.C.G., andPombeiro, A.J.L., Noncovalent Interactions in Catalysis, Croydon, RSC, 2019. ISBN: 978-1-78801-468-7.

  34. Iwasawa, T., Tetrahedron Lett., 2017, vol. 58, pp. 4217–4226. https://doi.org/10.1016/j.tetlet.2017.10.003

    Article  CAS  Google Scholar 

  35. Tang, B., Zhao, J., Xu, J.-F.F., and Zhang, X., Chem. Eur. J., 2020, vol. 26, pp.15446–15460. https://doi.org/10.1002/chem.202003897

    Article  CAS  PubMed  Google Scholar 

  36. Hong, C.M., Bergman, R.G., Raymond, K.N., and Toste, F.D., Acc. Chem. Res., 2018, vol. 51. pp. 2447–2455. https://doi.org/10.1021/acs.accounts.8b00328

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, D., Martinez, A., and Dutasta, J.-P., Chem. Rev., 2017, vol. 117, pp. 4900–4942. https://doi.org/10.1021/acs.chemrev.6b00847

    Article  CAS  PubMed  Google Scholar 

  38. Vardhan, H. and Verpoort, F., Adv. Synth. Catal., 2015, vol. 357, pp. 1351–1368. https://doi.org/10.1002/adsc.201400778

    Article  CAS  Google Scholar 

  39. Tang, Y., He, Y., Feng Y., and Fan Q., Prog. Chem., 2018, vol. 30, pp. 476–490. https://doi.org/10.7536/ppC180137

    Article  CAS  Google Scholar 

  40. Raynal, M., Ballester, P., Vidal-Ferran, A., and van Leeuwen, P.W.N.M., Chem. Soc. Rev., 2014, vol. 43, pp. 1660–1733. https://doi.org/10.1039/c3cs60027k

    Article  CAS  PubMed  Google Scholar 

  41. Raynal, M., Ballester, P., Vidal-Ferran, A., and van Leeuwen, P.W.N.M., Chem. Soc. Rev., 2014, vol. 43, pp. 1734–1787. https://doi.org/10.1039/c3cs60037h

    Article  CAS  PubMed  Google Scholar 

  42. Vallavoju, N. and Sivaguru, J., Chem. Soc. Rev., 2014, vol. 43, pp. 4084–4101. https://doi.org/10.1039/c3cs60471c

    Article  CAS  PubMed  Google Scholar 

  43. Davis, H.J. and Phipps, R.J., Chem. Sci., 2017, vol. 8, pp. 864–877. https://doi.org/10.1039/C6SC04157D

    Article  CAS  PubMed  Google Scholar 

  44. Feng, Z., Zhang, T., Wang, H., and Xu, B., Chem. Soc. Rev., 2017, vol. 46, pp. 6470–6479. https://doi.org/10.1039/C7CS00472A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elemans, J.A.A.W. and Nolte, R.J.M., Chem. Commun., 2019, vol. 55, pp. 9590–9605. https://doi.org/10.1039/C9CC04372A

    Article  CAS  Google Scholar 

  46. Elemans, J.A.A.W., Cornelissen, J.J.L.M., Feiters, M.C., Rowan, A.E., and Nolte, R.J.M., in Supramolecular Catalysis, van Leeuwen, P.W.N.M., Ed., Weinheim: Wiley-VCH., 2008, pp. 143–164. https://doi.org/10.1002/9783527621781.ch6

  47. Fang, Y., J.A., Powell, J.A., Li, E., Wang, Q., Perry, Z., Kirchon, A., Yang, X., Xiao, Z., Zhu, C., Zhang, L., Huang, F., and Zhou, H.-C., Chem. Soc. Rev., 2019, vol. 48, pp. 4707–4730. https://doi.org/10.1039/C9CS00091G

    Article  CAS  PubMed  Google Scholar 

  48. Gaeta, C., La, Manna, P., De Rosa, M., Soriente, A., Talotta, C., and Neri, P., ChemCatChem, 2021, vol. 13, pp. 1638–1658. https://doi.org/10.1002/cctc.202001570

    Article  CAS  Google Scholar 

  49. Catti, L., Zhang, Q., and Tiefenbacher, K., Chem. Eur. J., 2016, vol. 22, pp. 9060–9066. https://doi.org/10.1002/chem.201600726

    Article  CAS  PubMed  Google Scholar 

  50. Brown, C.J., Toste, F.D., Bergman, R.G., and Raymond, K.N., Chem. Rev., 2015, vol. 115, pp. 3012–3035. https://doi.org/10.1021/cr4001226

    Article  CAS  PubMed  Google Scholar 

  51. Morimoto, M., Bierschenk, S.M., Xia, K.T., Bergman, R.G., Raymond, K.N., and Toste, F.D., Nat. Catal., 2020, vol. 3, pp. 969–984. https://doi.org/10.1038/s41929-020-00528-3

    Article  CAS  Google Scholar 

  52. Tan, C., Chu, D., Tang, X., Liu, Y., Xuan, W., and Cui, Y., Chem. Eur. J., 2019, vol. 25, pp. 662–672. https://doi.org/10.1002/chem.201802817

    Article  CAS  PubMed  Google Scholar 

  53. Percástegui, E.G., Ronson, T.K., and Nitschke, J.R., Chem. Rev., 2020, vol. 120, pp. 13480–13544. https://doi.org/10.1021/acs.chemrev.0c00672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antipin, I.S., Alfimov, M.Vl., Arslanov, V.V., Burilov,  V.A., Vatsadze, S.Z., Voloshin, Ya.Z., Volcho, K.P., Gorbatchuk, V.V., Gorbunova, Yu.G., Gromov, S.P., Dudkin, S.V., Zaitsev, S.Yu., Zakharova, L.Ya., Ziganshin, M.A., Zolotukhina, A.V., Kalinina, M.A., Karakhanov, E.A., Kashapov, R.R., Koifman, O.I., Konovalov, A.I., Korenev, V.S., Maksimov, A.L., Mamardashvili, N.Zh., Mamardashvili, G.M., Martynov, A.G., Mustafina, A.R., Nugmanov, R.I., Ovsyannikov, A.S., Padnya, P.L., Potapov, A.S., Selektor, S.L., Sokolov, M.N., Solovieva, S.E., Stoikov, I.I., Stuzhin, P.A., Suslov, E.V., Ushakov, E.N., Fedin, V.P., Fedorenko, S.V., Fedorova, O.A., Fedorov, Yu.V., Chvalun, S.N., Tsivadze, A.Yu., Shtykov, S.N., Shurpik, D.N., Shcherbina, M.A., and Yakimova, L.S., Russ. Chem. Rev., 2021, vol. 90, pp. 895–1107. https://doi.org/10.1070/RCR5011

    Article  Google Scholar 

  55. Fujita, M., Tominaga, M., Hori, A., and Therrien, B., Acc. Chem. Res., 2005, vol. 38, pp. 369–378. https://doi.org/10.1021/ar040153h

    Article  CAS  PubMed  Google Scholar 

  56. Cullen, W., Misuraca, M.C., Hunter, C.A., Williams, N.H., and Ward, M.D., Nat. Chem., 2016, vol. 8, pp. 231–236. https://doi.org/10.1038/nchem.2452

    Article  CAS  PubMed  Google Scholar 

  57. Hong, C.M., Morimoto, M., Kapustin, E.A., Alzakhem, N., Bergman, R.G., Raymond, K.N., and Toste, F.D., J. Am. Chem. Soc., 2018, vol. 140, pp. 6591–6595. https://doi.org/10.1021/jacs.8b01701

    Article  CAS  PubMed  Google Scholar 

  58. MacGillivray, L.R. and Atwood, J.L., Nature, 1997, vol. 389, pp. 469–472. https://doi.org/10.1038/38985

    Article  CAS  Google Scholar 

  59. Shivanyuk, A. and Rebek, J., Proc. Natl. Acad. Sci., 2001. vol. 98. pp. 7662–7665. https://doi.org/10.1073/pnas.141226898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Taura, D., Hioki, S., Tanabe, J., Ousaka, N., and Yashima, E., ACS Catal., 2016, vol. 6, pp. 4685–4689. https://doi.org/10.1021/acscatal.6b01627

    Article  CAS  Google Scholar 

  61. Mozhaitsev, E.S., Ponomarev, K.Y., Patrushev, O.S., Medvedko, A.V., Dalinger, A.I., Rogachev, A.D., Komarova, N.I., Korchagina, D.V., Suslov, E.V., Volcho, K.P., Salakhutdinov, N.F., and Vatsadze, S.Z., Russ. J. Org. Chem., 2020, vol. 56, pp. 1969–1981. https://doi.org/10.1134/S1070428020110123

    Article  CAS  Google Scholar 

  62. Scharnagel, D., Müller, A., Prause, F., Eck, M., Goller, J., Milius, W., and Breuning, M., Chem. Eur. J., 2015, vol. 21, pp. 12488–12500. https://doi.org/10.1002/chem.201502090

    Article  CAS  PubMed  Google Scholar 

  63. Maheswaran, H., Prasanth, K.L., Krishna, G.G., Ravikumar, K., Sridhar, B., and Kantam, M.L., Chem. Commun., 2006, vol. 39, pp. 4066–4068. https://doi.org/10.1039/B610203D

    Article  Google Scholar 

  64. Xu, L., Fang, G., and Li, S., RSC Adv., 2017, vol. 7, pp. 14046–14052. https://doi.org/10.1039/C7RA00710H

    Article  CAS  Google Scholar 

  65. Valero, G. and Moyano, A., Chirality, 2016, vol. 28, pp. 599–605. https://doi.org/10.1002/chir.22618

    Article  CAS  PubMed  Google Scholar 

  66. Bérubé, C. and Voyer, N., Supramol. Chem., 2018, vol. 30, pp. 184–195. https://doi.org/10.1080/10610278.2017.1392521

    Article  CAS  Google Scholar 

  67. Olivo, G., Capocasa, G., Ticconi, B., Lanzalunga, O., Di Stefano, S., and Costas, M., Angew. Chem. Int. Ed., 2020, vol. 59, pp. 12703–12708. https://doi.org/10.1002/anie.202003078

    Article  CAS  Google Scholar 

  68. Vatsadze, S.Z. and Gromov, S.P., Macroheterocycles, 2017, vol. 10, pp. 432–445. https://doi.org/10.6060/mhc171142v

    Article  CAS  Google Scholar 

  69. Bérubé, C., Barbeau, X., Cardinal, S., Boudreault, P.L., Bouchard, C., Delcey, N., Lagüe, P., and Voyer, N., Supramol. Chem., 2017, vol. 29, pp. 330–349. https://doi.org/10.1080/10610278.2016.1236197

    Article  CAS  Google Scholar 

  70. Bérubé, C., Barbeau, X., Lagüe, P., and Voyer, N., Chem. Commun., 2017, vol. 53, pp. 5099–5102. https://doi.org/10.1039/C7CC01168G

    Article  Google Scholar 

  71. Anand, M. and Nidhi, J., Int. J. Life Sci. Pharma Res., 2020, vol. 10, pp. 88–93. https://doi.org/10.22376/ijpbs/lpr.2020.10.2.l88-93

    Article  CAS  Google Scholar 

  72. Shivhare, K.N. and Siddiqui, I.R., Supramol. Chem., 2019, vol. 31, pp. 52–61. https://doi.org/10.1080/10610278.2018.1529315

    Article  CAS  Google Scholar 

  73. Neva, T., Mellet, C.O., Fernández, J.M.G., and Benito, J.M., J. Carbohydr. Chem., 2019, vol. 38, pp. 1–23. https://doi.org/10.1080/07328303.2019.1609020

    Article  CAS  Google Scholar 

  74. Chen, W., Tang, Z., Chang, C.-E.A., Sun, L., Ali, Z.A., Wong, B.M., and Chang, C.A., Catalysts, 2018, vol. 8, art. no. 51. https://doi.org/10.3390/catal8020051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chate, A.V., Dongre, R.M., Khaire, M.K., Bondle, G.M., Sangshetti, J.N., and Damale, M., Res. Chem. Intermed., 2018, vol. 44, pp. 6119–6136. https://doi.org/10.1007/s11164-018-3479-9

    Article  CAS  Google Scholar 

  76. Patil, R.N. and Kumar, A.V., ChemistrySelect, 2018, vol. 3, pp. 9812–9818. https://doi.org/10.1002/slct.201801559

    Article  CAS  Google Scholar 

  77. Ghorad, A., Mahalle, S., Khillare, L.D., Sangshetti, J.N., and Bhosle, M.R., Catal. Lett., 2017, vol. 147, pp. 640–648. https://doi.org/10.1007/s10562-017-1983-y

    Article  CAS  Google Scholar 

  78. Chate, A.V. and Gill, C.H., Lett. Org. Chem., 2017, vol. 14, pp. 93–102.

    Article  CAS  Google Scholar 

  79. Chate, A.V., Rathod, U.B., Kshirsagar, J.S., Gaikwad, P.A., Mane, K.D., Mahajan, P.S., Nikam, M.D., and Gill, C.H., China J. Catal., 2016, vol. 37, pp. 146–152. https://doi.org/10.1016/S1872-2067(15)61005-1s

    Article  CAS  Google Scholar 

  80. Londhe, B.S., Padwal, S.L., Bhosale, M.R., and Mane, R.A., J. Iran. Chem. Soc., 2016, vol. 13, pp. 443–447. https://doi.org/10.1007/s13738-015-0752-3

    Article  CAS  Google Scholar 

  81. Garcia, M.A.A., Hu, Y., and Willner, I., Chem. Commun., 2016, vol. 52, pp. 2153–2156. https://doi.org/10.1039/C5CC08873A

    Article  Google Scholar 

  82. Kataev, E.A., Reddy, M.R., Reddy, G.N., Reddy, V.H., Reddy, C. S., and Reddy, B.V.S., New J. Chem., 2016, vol. 40, pp. 1693–1697. https://doi.org/10.1039/C5NJ01902H

    Article  CAS  Google Scholar 

  83. Ren, Y., Yang, B., and Liao, X., RSC Adv., 2016, vol. 6, pp. 22034–22042. https://doi.org/10.1039/C6RA01002D

    Article  CAS  Google Scholar 

  84. Ren, Y., Yang, B., and Liao, X., Catal. Sci. Technol., 2016, vol. 6, pp. 4283–4293. https://doi.org/10.1039/c5cy01888a

    Article  CAS  Google Scholar 

  85. Srivastava, M., Rai, P., Singh, J., Yadav, S., Tripathi, B.P., and Singh, J., Curr. Organocatal., 2016, vol. 3, pp. 32–38. https://doi.org/10.2174/2213337202666150709164207

    Article  CAS  Google Scholar 

  86. Srivastava, M., Rai, P., Yadav, S., Tripathi, B.P., Mishra, A., Singh, J., and Singh, J., J. Indian Chem. Soc., 2016, vol. 93, pp. 843–850.

    CAS  Google Scholar 

  87. Wagner, A., Ly, K.H., Heidary, N., Szabó, I., Földes, T., Assaf, K.I., Barrow, S.J., Sokołowski, K., Al-Hada, M., Kornienko, N., Kuehnel, M.F., Rosta, E., Zebger, I., Nau, W.M., Scherman, O.A., and Reisner, E., ACS Catal., 2020, vol. 10, pp. 751–761. https://doi.org/10.1021/acscatal.9b04221

    Article  CAS  PubMed  Google Scholar 

  88. Li, H., Yu, J., Ge, Q., Liu, M., Tao, Z., and Cong, H., ChemCatChem., 2020, vol. 12, pp. 5727–5732. https://doi.org/10.1002/cctc.202000956

    Article  CAS  Google Scholar 

  89. Berta, D., Szabo, I., Scherman, O.A., and Rosta, E., Front. Chem., 2020, vol. 8, art. no. 587084. https://doi.org/10.3389/fchem.2020.587084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lambert, H., Zhang, Y.-W., and Lee, T.-C., J. Phys. Chem. C., 2020, vol. 124, pp. 11469–11479. https://doi.org/10.1021/acs.jpcc.0c02012

    Article  CAS  Google Scholar 

  91. Tang, X., Yang, Y., Kang, Y., Wu, H., Xu, J.-F., and Wang, Z., Langmuir, 2020, vol. 36, pp. 5954–5959. https://doi.org/10.1021/acs.langmuir.0c00806

    Article  CAS  PubMed  Google Scholar 

  92. Jiao, Y., Tang, B., Zhang, Y., Xu, J.-F., Wang, Z., and Zhang, X., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 6077–6081. https://doi.org/10.1002/anie.201713351

    Article  CAS  Google Scholar 

  93. Tang, B., Li, W.-L., Jiao, Y., Lu, J.-B., Xu, J.-F., Wang, Z., Li, J., and Zhang, X., Chem. Sci., 2018, vol. 9, pp. 5015–5020. https://doi.org/10.1039/C8SC01434E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, X., Chen, M., Wang, F., Jin, X.-Y., Cong, H., and Tao, Z., Mini-Rev. Org. Chem., 2017, vol. 15, pp. 274–282. https://doi.org/10.2174/1570193x15666171228150315

    Article  CAS  Google Scholar 

  95. Tang, X., Huang, Z., Chen, H., Kang, Y., Xu, J.-F., and Zhang, X., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 8545–8549. https://doi.org/10.1002/anie.201803749

    Article  CAS  Google Scholar 

  96. Scorsin, L., Roehrs, J.A., Campedelli, R.R., Caramori, G.F., Ortolan, A.O., Parreira, R.L.T., Fiedler, H.D., Acuña, A., García-Río, L., and Nome, F., ACS Catal., 2018. vol. 8. pp. 12067–12079. https://doi.org/10.1021/acscatal.8b03605

    Article  CAS  Google Scholar 

  97. Yang, J. and Zhang, X., Acta Chim. Sin., 2018, vol. 76, pp. 659–665. https://doi.org/10.6023/A18070273

    Article  CAS  Google Scholar 

  98. Jiao, Y., Li, W.-L., Xu, J.-F., Wang, G., Li, J., Wang, Z., and Zhang, X., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 8933–8937. https://doi.org/10.1002/anie.201603182

    Article  CAS  Google Scholar 

  99. Xu, L., Fang, G., Yu, Y., Ma, Y., Ye, Z., and Li, Z., Mol. Catal., 2019, vol. 467, pp. 1–8. https://doi.org/10.1016/j.mcat.2019.01.021

    Article  CAS  Google Scholar 

  100. Basílio, N., Pessêgo, M., Acuña, A., García-Río, L., ChemCatChem, 2019, vol. 11, pp. 5397–5404. https://doi.org/10.1002/cctc.201901254

    Article  CAS  Google Scholar 

  101. Pliego, J.R., Int. J. Quantum Chem., 2018, vol. 118, pp. 1–9. https://doi.org/10.1002/qua.25648

    Article  CAS  Google Scholar 

  102. Ho, T.D. and Schramm, M.P., Eur. J. Org. Chem., 2019, pp. 5678–5684. https://doi.org/10.1002/ejoc.201900829

  103. Shu, Z., Chen, Y., Yu, H., Liao, X., Liu, C., Tang, H., Li, S., and Yang, P., Chem. Commun., 2019, vol. 55, pp. 5491–5494. https://doi.org/10.1039/C9CC01436E

    Article  CAS  Google Scholar 

  104. Zhu, X., Xu, G., Chamoreau, L.M., Zhang, Y., Mouriès-Mansuy, V., Fensterbank, L., Bistri-Aslanoff, O., Roland, S., and Sollogoub, M., Chem. Eur. J., 2020, vol. 26, pp. 15901–15909. https://doi.org/10.1002/chem.202001990

    Article  CAS  PubMed  Google Scholar 

  105. Wang, K., Jordan, J.H., Velmurugan, K., Tian, X., Zuo, M., Hu, X.-Y., and Wang, L., Angew. Chem. Int. Ed., 2021, vol. 60, pp. 9205–9214. https://doi.org/10.1002/anie.202010150

    Article  CAS  Google Scholar 

  106. Kosiorek, S., Rad, N., and Sashuk, V., ChemCatChem, 2020, vol. 12, pp. 2776–2782. https://doi.org/10.1002/cctc.202000082

    Article  CAS  Google Scholar 

  107. Wang, M.-X., Sci. China Chem., 2018, vol. 61, pp. 993–1003. https://doi.org/10.1007/s11426-018-9328-8

    Article  CAS  Google Scholar 

  108. Guo, Q.-H., Zhao, L., and Wang, M.-X., Angew. Chem., 2015, vol. 127, pp. 8506–8509. https://doi.org/10.1002/ange.201503179

    Article  Google Scholar 

  109. Wang, D.X. and Wang, M.X., Acc. Chem. Res., 2020, vol. 53, pp. 1364–1380. https://doi.org/10.1021/acs.accounts.0c00243

    Article  CAS  PubMed  Google Scholar 

  110. Huang, G., Chen, Z., Wie, X., Chen, Y., Li, X., Zhong, H., and Tan, M., China J. Org. Chem., 2016, vol. 40, p. 614. https://doi.org/10.6023/cjoc201909029

    Article  CAS  Google Scholar 

  111. Guo, H., Zhang, L.-W., Zhou, H., Meng, W., Ao, Y.-F., Wang, D.-X., and Wang, Q.-Q., Angew. Chem., 2020, vol. 59, pp. 2623–2627. https://doi.org/10.1002/anie.201910399

    Article  CAS  Google Scholar 

  112. Ning, R., Zhou H., Nie, S.-X., Ao, Y.-F., Wang, D.-X., and Wang, Q.-Q., Angew. Chem. Int. Ed., 2020, vol. 59, pp. 10894–10898. https://doi.org/10.1002/anie.202003673

    Article  CAS  Google Scholar 

  113. Ning, R., Ao, Y.-F., Wang, D.-X., and Wang, Q.-Q., Chem. Eur. J., 2018, vol. 24, pp. 4268–4272. https://doi.org/10.1002/chem.201800326

    Article  CAS  PubMed  Google Scholar 

  114. Feng, H.-T., Yuan, Y.-X., Xiong, J.-B., Zheng, Y.-S., and Tang, B.Z., Chem. Soc. Rev., 2018, vol. 47, pp. 7452–7476. https://doi.org/10.1039/C8CS00444G

    Article  CAS  PubMed  Google Scholar 

  115. Xu, L., Fang, G., Tao, J., Ye, Z., Xu, S., and Li, Z., ACS Catal., 2018, vol. 8, pp. 11910–11925. https://doi.org/10.1021/acscatal.8b03256

    Article  CAS  Google Scholar 

  116. Mondal, P., Sarkar, S., and Rath, S.P., Chem. Eur. J., 2017, vol. 23, pp. 7093–7103. https://doi.org/10.1002/chem.201700577

    Article  CAS  PubMed  Google Scholar 

  117. Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Y.A., Alfimov, M.V., and Howard, J.A.K., Eur. J. Org. Chem., 2010, pp. 2587–2599. https://doi.org/10.1002/ejoc.200901324

  118. Kang, Y., Tang, X., Yu, H., Cai, Z., Huang, Z., Wang, D., Xu, J.-F., and Zhang, X., Chem. Sci., 2017, vol. 8, pp. 8357–8361. https://doi.org/10.1039/C7SC04125J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pattabiraman, M., Kaanumalle, L.S., and Natarajan, A., Langmuir, 2006, vol. 22, pp. 7605–7609. https://doi.org/10.1021/la061215a

    Article  CAS  PubMed  Google Scholar 

  120. Guo, J., Fan, Y., Lu, Y., Zheng, S., and Su, C., Angew. Chem., 2020, vol. 132, pp. 8739–8747. https://doi.org/10.1002/ange.201916722

    Article  Google Scholar 

  121. Wang, J.S., Wu, K., Yin, C., Li, K., Huang, Y., Ruan, J., Feng, X., Hu, P., and Su, C.Y., Nat. Commun., 2020, vol. 11, pp. 1–9. https://doi.org/10.1038/s41467-020-18487-5

    Article  CAS  Google Scholar 

  122. Kuz’mina, L.G., Vedernikov, A.I., Gromov, S.P., and  Alfimov, M.V., Kristallografiya, 2019, vol. 64, pp. 677–700. https://doi.org/10.1134/S0023476119050126

    Article  Google Scholar 

  123. Gordeev, E.G. and Ananikov, V.P., ppLoS ONE, 2015, vol. 10, p. e0119984. https://doi.org/10.1371/journal.pone.0119984

  124. Young, T.A., Martí-Centelles, V., Wang, J., Lusby, P.J., and Duarte F., J. Am. Chem. Soc., 2020, vol. 142, pp. 1300–1310. https://doi.org/10.1021/jacs.9b10302

    Article  CAS  PubMed  Google Scholar 

  125. Ono, K., Niibe, M., and Iwasawa, N., Chem. Sci., 2019, vol. 10, pp. 7627–7632. https://doi.org/10.1039/c9sc01597c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sato, M., Kishimoto, S., Yokoyama, M., Jamieson, C.S., Narita, K., Maeda, N., Hara, K., Hashimoto, H., Tsunematsu, Y., Houk, K.N., Tang, Y., and Watanabe, K., Nat. Catal., 2021, vol. 4, pp. 223–232. https://doi.org/10.1038/s41929-021-00577-2

    Article  CAS  Google Scholar 

  127. Jeon, B.S., Wang, S.A., Ruszczycky, M.W., and Liu, H.W., Chem. Rev., 2017, vol. 117, pp. 5367–5388. https://doi.org/10.1021/acs.chemrev.6b00578

    Article  CAS  PubMed  Google Scholar 

  128. Martí-Centelles, V., Lawrence, A.L., and Lusby, P.J., J. Am. Chem. Soc., 2018, vol. 140, pp. 2862–2868. https://doi.org/10.1021/jacs.7b12146

    Article  CAS  PubMed  Google Scholar 

  129. Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, 2nd ed., Chichester: Wiley, 2009. ISBN: 978-0-470-51233-3.

    Book  Google Scholar 

  130. Lefevre, S., Zhang, D., Godart, E., Jean, M., Vanthuyne, N., Mulatier, J.-C., Dutasta, J.-P., Guy, L., and Martinez, A., Chem. Eur. J., 2016, vol. 22, pp. 2068–2074. https://doi.org/10.1002/chem.201504108

    Article  CAS  PubMed  Google Scholar 

  131. Syntrivanis, L.-D., Nemethova, I., Schmid, D., Levi, S., Prescimone, A., Bissegger, F., Major, D.T., and Tiefenbacher, K., J. Am. Chem. Soc., 2020, vol. 142, pp. 5894–5900. https://doi.org/10.1021/jacs.0c01464

    Article  CAS  PubMed  Google Scholar 

  132. La Sorella, G., Sperni, L., Strukul, G., and Scarso, A., Adv. Synth. Catal., 2016, vol. 358, pp. 3443–3449. https://doi.org/10.1002/adsc.201600430

    Article  CAS  Google Scholar 

  133. Noto, N., Hyodo, Y., Yoshizawa, M., Koike, T., and Akita, M., ACS Catal., 2020, vol. 10, pp. 14283–14289. https://doi.org/10.1021/acscatal.0c04221

    Article  CAS  Google Scholar 

  134. Gambaro, S., La Manna, P., De Rosa, M., Soriente, A., Talotta, C., Gaeta, C., and Neri, P., Front. Chem., 2019, vol. 7, pp. 1–9. https://doi.org/10.3389/fchem.2019.00687

    Article  CAS  Google Scholar 

  135. Köster, J.M., Häussinger, D., and Tiefenbacher, K., Front. Chem., 2018, vol. 6, art. no. 639. https://doi.org/10.3389/fchem.2018.00639

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Q. and Tiefenbacher, K., Angew. Chem. Int. Ed., 2019, vol. 58, pp. 12688–12695. https://doi.org/10.1002/ange.201906753

    Article  CAS  Google Scholar 

  137. Catti, L. and Tiefenbacher, K., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 14589–14592. https://doi.org/10.1002/anie.201712141

    Article  CAS  Google Scholar 

  138. La Manna, P., Talotta, C., Floresta, G., De Rosa, M., Soriente, A., Rescifina, A., Gaeta, C., and Neri, P., Angew. Chem. In. Ed., 2018, vol. 57, pp. 5423–5428. https://doi.org/10.1002/anie.201801642

    Article  CAS  Google Scholar 

  139. Endo, N., Kanaura, M., Schramm, M.P., and Iwasawa, T., Tetrahedron Lett., 2016, vol. 57, pp. 4754–4757. https://doi.org/10.1016/j.tetlet.2016.09.039

    Article  CAS  Google Scholar 

  140. Schramm, M.P., Kanaura, M., Ito, K., Die, M., and Iwasawa, T., Eur. J. Org. Chem., 2016, pp. 813–820. https://doi.org/10.1002/ejoc.201501426

  141. Inoue, M., Ugawa, K., Maruyama, T., and Iwasawa, T., Eur. J. Org. Chem., 2018, pp. 5304–5311. https://doi.org/10.1002/ejoc.201800948

  142. Levin, M.D., Kaphan, D.M., Hong, C.M., Berg-man, R.G., Raymond, K.N., and Toste, F.D., J. Am. Chem. Soc., 2016, vol. 138, pp. 9682–9693. https://doi.org/10.1021/jacs.6b05442

    Article  CAS  PubMed  Google Scholar 

  143. Norjmaa, G., Marechal, J.-D., and Ujaque, G., Chem. Eur. J., 2020, vol. 26, pp. 6988–6992. https://doi.org/10.1002/chem.201905608

    Article  CAS  PubMed  Google Scholar 

  144. Ngai, C., Sanchez-Marsetti, C.M., Harman, W.H., and Hooley, R.J., Angew. Chem. Int. Ed., 2020, vol. 59, pp. 23505–23509. https://doi.org/10.1002/anie.202009553

    Article  CAS  Google Scholar 

  145. Miyamura, H., Bergman, R.G., Raymond, K.N., Toste, F.D., and Miyamura, H., J. Am. Chem. Soc., 2020, vol. 142, pp. 19327–19338. https://doi.org/10.1021/jacs.0c09556

    Article  CAS  PubMed  Google Scholar 

  146. Li, S.C., Cai, L.X., Zhou, L.P., Guo, F., and Sun, Q.F., Sci. China Chem., 2019, vol. 62, pp. 713–718. https://doi.org/10.1007/s11426-018-9427-4

    Article  CAS  Google Scholar 

  147. Vidal, A., Battistin, F., Balducci, G., Iengo, E., Alessio, E., and Demitri, N., Inorg. Chem., 2019, vol. 58, pp. 7357–7367. https://doi.org/10.1021/acs.inorgchem.9b00487

    Article  CAS  PubMed  Google Scholar 

  148. Lu, Z., Lavendomme, R., Nitschke, J.R., and Burghaus, O., Angew. Chem. Int. Ed., 2019, vol. 58, pp. 9073–9077. https://doi.org/10.1002/anie.201903286

    Article  CAS  Google Scholar 

  149. Bogie, P.M., Holloway, L.R., Ngai, C., Miller, T.F., Grewal, D.K., and Hooley, R.J., Chem. Eur. J., 2019, vol. 25, pp. 10232–10238.https://doi.org/10.1002/chem.201902049

    Article  CAS  PubMed  Google Scholar 

  150. Norjmaa, G., Marechal, J.-D., and Ujaque, G., J. Am. Chem. Soc., 2019, vol. 141, pp. 13114–13123. https://doi.org/10.1021/jacs.9b04909

    Article  CAS  PubMed  Google Scholar 

  151. Jing, X., Yang, Y., He, C., Chang, Z., Duan, C., Jing, X., Duan, C., and Reek, J.N.H., Angew. Chem. Int. Ed., 2017, vol. 56, pp. 11759–11763. https://doi.org/10.1002/anie.201704327

    Article  CAS  Google Scholar 

  152. Zhang, D., Dutasta, J.P., Dufaud, V., Guy, L., and Martinez, A., ACS Catal., 2017, vol. 7, pp. 7340–7345. https://doi.org/10.1021/acscatal.7b01886

    Article  CAS  Google Scholar 

  153. Brown, C.J., Kokai, A., Miller, G.M., Bergman, R.G., and Raymond, K.N., Supramol. Chem., 2016, vol. 28, pp. 188–191. https://doi.org/10.1080/10610278.2015.1122196

    Article  CAS  Google Scholar 

  154. Leenders, S.H.A.M., Dürr, M., Ivanovic-Burmazovic, I., and Reek, J.N.H., Adv. Synth. Catal., 2016, vol. 358, pp. 1509–1518. https://doi.org/10.1002/adsc.201600071

    Article  CAS  Google Scholar 

  155. Qiao, Y., Li J., Wang, Z., Zhang, L., Lin, W., Li, J., Lin, W., and Wang Z., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 12778–12782. https://doi.org/10.1002/anie.201606847

    Article  CAS  Google Scholar 

  156. Kaphan, D.M., Toste, F.D., Bergman, R.G., and Raymond, K.N., J. Am. Chem. Soc., 2015, vol. 137, pp. 9202–9205. https://doi.org/10.1021/jacs.5b01261

    Article  CAS  PubMed  Google Scholar 

  157. Takezawa, H., Shitozawa, K., and Fujita, M., Nat. Chem., 2020, vol. 12, pp. 574–578. https://doi.org/10.1038/s41557-020-0455-y

    Article  CAS  PubMed  Google Scholar 

  158. Vatsadze, S.Z., Loginova, Y.D., dos Passos Gomes, G., and Alabugin, I.V., Chem. Eur. J., 2017, vol. 23, pp. 3225–3245. https://doi.org/10.1002/chem.201603491

    Article  CAS  PubMed  Google Scholar 

  159. Brunsveld, L., Folmer, B.J.B., Meijer, E.W., and Sijbesma, R.P., Chem. Rev., 2001, vol. 101, pp. 4071–4098. https://doi.org/10.1021/cr990125q

    Article  CAS  PubMed  Google Scholar 

  160. Vatsadze, S. Z., Extended abstract of doctoral dissertation in chemistry, Moscow, 2008. https://static.freereferats.ru/_avtoreferats/01004040470.pdf (available on January 21, 2022).

  161. Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Paik Suh, M., and Reedijk, J., Pure Appl. Chem., 2013, vol. 85, pp. 1715–1724. https://doi.org/10.1351/ppAC-REC-12-11-20

    Article  CAS  Google Scholar 

  162. Wang, Q. and Astruc, D., Chem. Rev., 2020, vol. 120, pp. 1438–1511. https://doi.org/10.1021/acs.chemrev.9b00223

    Article  CAS  PubMed  Google Scholar 

  163. Gheorghe, A., Tepaske, M.A., and Tanase, S., Inorg. Chem. Front., 2018, vol. 5, pp. 1512–1523. https://doi.org/10.1039/c8qi00063h

    Article  CAS  Google Scholar 

  164. Bhattacharjee, S., Khan, M.I., Li, X., Zhu, Q.L., and Wu, X.T., Catalysts, 2018, vol. 8, art. no. 120. https://doi.org/10.3390/catal8030120

    Article  CAS  Google Scholar 

  165. Escuder, B., Rodríguez-Llansola, F., and Miravet, J.F., New J. Chem., 2010, vol. 34, pp. 1044–1054. https://doi.org/10.1039/b9nj00764d

    Article  CAS  Google Scholar 

  166. Ananikov, V.P., Khemchyan, L.L., Ivanova, Y.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dilman, A.D., Terent’ev, A.O., and Krylov, I.B., Russ. Chem. Rev., 2014, vol. 83, pp. 885–985. https://doi.org/10.1070/RC2014v83n10ABEH004471

    Article  CAS  Google Scholar 

  167. Yaghi, O.M., Kalmutzki, M.J., and Diercks, C.S., Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks, Weinheim: Wiley-VCH, 2019. https://doi.org/10.1002/9783527821099

  168. Atsushi, N., Covalent Organic Frameworks, Boca Raton: Jenny Stanford, 2019.

    Google Scholar 

  169. Tian, Y. and Zhu, G., Chem. Rev., 2020, vol. 120, pp. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687

    Article  CAS  PubMed  Google Scholar 

  170. Kulikov, L.A., Akopyan, A.V., Polikarpova, P.D., Zolotukhina, A.V., Maximov, A.L., Anisimov, A.V., and Karakhanov, E.A., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 20562–20572. https://doi.org/10.1021/acs.iecr.9b04076

    Article  CAS  Google Scholar 

  171. Batryshin, R.A., Makeeva, D.A., Kulikov, L.A., Kardasheva, Y.S., Maksimov, A.L., and Karakhanov, E.A., Pet. Chem., 2019, vol. 59, pp. 575–580. https://doi.org/10.1134/S0965544119060069

    Article  CAS  Google Scholar 

  172. Sun, Q., Dai, Z., Meng, X., and Xiao, F.-S., Chem. Soc. Rev., 2015, vol. 44, pp. 6018–6034. https://doi.org/10.1039/C5CS00198F

    Article  CAS  PubMed  Google Scholar 

  173. Kulikov, L.A., Boronoev, M.P., Kardasheva, Y.S., and Terenina, M.V., Pet. Chem., 2020, vol. 60, pp. 307–309. https://doi.org/10.1134/S0965544120030123

    Article  CAS  Google Scholar 

  174. Wang, S., Gao, X., Hang, X., Zhu, X., Han, H., Liao, W., and Chen, W., J. Am. Chem. Soc., 2016, vol. 138, pp. 16236–16239. https://doi.org/10.1021/jacs.6b11218

    Article  CAS  PubMed  Google Scholar 

  175. Fang, Y., Xiao, Z., Li, J., Lollar, C., Liu, L., Lian, X., Yuan, S., Banerjee, S., Zhang, P., and Zhou, H.C., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 5283–5287. https://doi.org/10.1002/anie.201712372

    Article  CAS  Google Scholar 

  176. Mondal, B., Acharyya, K., Howlader, P., and Mukherjee, P.S., J. Am. Chem. Soc., 2016, vol. 138, pp. 1709–1716. https://doi.org/10.1021/jacs.5b13307

    Article  CAS  PubMed  Google Scholar 

  177. Mondal, B. and Mukherjee, P.S., J. Am. Chem. Soc., 2018, vol. 140, pp. 12592–12601. https://doi.org/10.1021/jacs.8b07767

    Article  CAS  PubMed  Google Scholar 

  178. Kulikov, L., Kalinina, M., Makeeva, D., Maximov, A., Kardasheva, Y., Terenina, M., and Karakhanov, E., Catalysts, 2010, vol. 10, art. no. 1106. https://doi.org/10.3390/catal10101106

    Article  CAS  Google Scholar 

  179. Karakhanov, E., Maximov, A., Terenina, M., Vinokurov, V., Kulikov, L., Makeeva, D., and Glotov, A., Catal. Today, 2020, vol. 357, pp. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028

    Article  CAS  Google Scholar 

  180. Shakirov, I.I., Boronoev, M.P., Zolotukhina, A.V., Maximov, A.L., Karakhanov, E.A., Pet. Chem., 2020, vol. 60, pp. 1136–1140. https://doi.org/10.1134/S0965544120100102

    Article  CAS  Google Scholar 

  181. Boronoev, M.P., Shakirov, I.I., Ignat’eva, V.I., Maximov, A.L., and Karakhanov, E.A., Pet. Chem., 2019, vol. 59, pp. 1300–1306.https://doi.org/10.1134/S096554411912003X

    Article  CAS  Google Scholar 

  182. Della Sala, F., Chen, J.L.-Y., Ranallo, S., Badocco, D., Pastore, P., Ricci, F., and Prins L.J., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 10737–10740. https://doi.org/10.1002/anie.201605309

    Article  CAS  Google Scholar 

  183. Kuznetsova, D.A., Gabdrakhmanov, D.R., Vasilieva, E.A., Lukashenko, S.S., Ahtamyanova, L.R., Siraev, I.S., and Zakharova, L.Y., Russ. J. Org. Chem., 2019, vol. 55, pp. 11–16. https://doi.org/10.1134/S1070428019010032

    Article  CAS  Google Scholar 

  184. Gabdrakhmanov, D.R., Valeeva, F.G., Semenov, V.E., Samarkina, D.A., Mikhailov, A.S., Reznik, V.S., and Zakharova, L.Y., Macroheterocycles, 2016, vol. 9, pp. 29–33. https://doi.org/10.6060/mhc151194g

    Article  Google Scholar 

  185. Chang, F., Zhou, Q., Pan, H., Liu, X., Zhang, H., and Yang, S., Renew. Energy, 2017, vol. 111, pp. 556–560. https://doi.org/10.1016/j.renene.2017.04.045

    Article  CAS  Google Scholar 

  186. Parvulescu, V.I. and García, H., Catal. Sci. Technol., 2018, vol. 8, pp. 4834–4857. https://doi.org/10.1039/c8cy01295d

    Article  CAS  Google Scholar 

  187. Zhu, J., Wang, R., Geng, R., Zhang, X., Wang, F., Jiao, T., Yang, J., Bai, Z., and Peng, Q., RSC Adv., 2019, vol. 9, pp. 22551–22558. https://doi.org/10.1039/c9ra03827b

    Article  CAS  Google Scholar 

  188. Li, T., Qiu, H., Liu, N., Li, J., Bao, Y., and Tong, W., Colloids Surf. B, 2020, vol. 191, art. no. 111001. https://doi.org/10.1016/j.colsurfb.2020.111001

    Article  CAS  Google Scholar 

  189. Bhattacharyya, T., Saha, P.P., and Dash, J., ACS Omega, 2018, vol. 3, pp. 2230–2241. https://doi.org/10.1021/acsomega.7b02039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, G., Wang, D., Bietsch, J., Chen, A., and Sharma, P., J. Org. Chem., 2020, vol. 85, pp. 16136–16156. https://doi.org/10.1021/acs.joc.0c01978

    Article  CAS  PubMed  Google Scholar 

  191. Zhao, L., Cai, J., Li, Y., Wie, J., Duan, C., and Duan, C., Nat. Commun., 2020, vol. 11, art. no. 2903. https://doi.org/10.1038/s41467-020-16714-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Burilov, V.A., Gafiatullin, M.B.K., Mironova, D.A., Sultanova, E.D., Evtugyn, V.G., Osin, Y.N., Islamov, D.R., Usachev, K.S., Solovieva, S.E., and Antipin, I.S., Eur. J. Org. Chem., 2020, pp. 2180–2189. https://doi.org/10.1002/ejoc.202000059

  193. Kunkel, M., Bitter, S., Sailer, F., Winter, R.F., and Polarz, S., ChemCatChem, 2020, vol. 12, pp. 2726–2731. https://doi.org/10.1002/cctc.202000412

    Article  CAS  Google Scholar 

  194. Sokolov, M.R., Enakieva, Y.Y., Yapryntsev, A.D., Shiryaev, A.A., Zvyagina, A.I., and Kalinina, M.A., Adv. Funct. Mater., 2020, vol. 30, art. no. 2000681. https://doi.org/10.1002/adfm.202000681

    Article  CAS  Google Scholar 

  195. Zhu, F.F., Chen, L.J., Chen, S., Wu, G.Y., Jiang, W.L., Shen, J.C., Qin, Y., Xu, L., and Yang, H.B., Chem., 2020, vol. 6, pp. 2395–2406. https://doi.org/10.1016/j.chempr.2020.06.038

    Article  CAS  Google Scholar 

  196. Bhowmick, S., Zhang, L., Ouyang, G., and Liu, M., ACS Omega, 2018, vol. 3, pp. 8329–8336. https://doi.org/10.1021/acsomega.8b00852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sinawang, G., Osaki, M., Takashima, Y., Yamaguchi, H., and Harada, A., Chem. Commun., 2020, vol. 56, pp. 4381–4395. https://doi.org/10.1039/d0cc00672f

    Article  CAS  Google Scholar 

  198. Kremer, C. and Lützen, A., Chem. Eur. J., 2013, vol. 19, pp. 6162–6196. https://doi.org/10.1002/chem.201203814

    Article  CAS  PubMed  Google Scholar 

  199. Martínez-Aguirre, M.A., Li, Y., Vanthuyne, N., Bouteiller, L., Raynal, M., Angew. Chem., 2021, vol. 133, pp. 4229–4237. https://doi.org/10.1002/ange.202012457

    Article  Google Scholar 

  200. Li, Y., Bouteiller, L., and Raynal, M., ChemCatChem, 2019, vol. 11, pp. 5212–5226. https://doi.org/10.1002/cctc.201901246

    Article  CAS  Google Scholar 

  201. Zimbron, J.M., Caumes, X., Li, Y., Thomas, C.M., Raynal, M., and Bouteiller, L., Angew. Chem., 2017, vol. 129, pp. 14204–14207. https://doi.org/10.1002/ange.201706757

    Article  Google Scholar 

  202. Adam, R., Mon, M., Greco, R., Kalinke, L.H.G., Vidal-Moya, A., Fernandez, A., Winpenny, R.E.P., Doménech-Carbó, A., Leyva-Pérez, A., Armentano, D., Pardo E., and Ferrando-Soria, J., J. Am. Chem. Soc., 2019, vol. 141, pp. 10350–10360. https://doi.org/10.1021/jacs.9b03914

    Article  CAS  PubMed  Google Scholar 

  203. Bai, S., Sinha, V., Kluwer, A.M., Linnebank, P.R., Abiri, Z., Bruin, B., and Reek J.N.H., ChemCatChem, 2019, vol. 11, pp. 5322–5329. https://doi.org/10.1002/cctc.201900487

    Article  CAS  Google Scholar 

  204. Salvio, R. and D’Abramo, M., Eur. J. Org. Chem., 2020, pp. 6004–6011. https://doi.org/10.1002/ejoc.202001022

  205. Mitra, R., Zhu, H., Grimme, S., and Niemeyer, J., Angew. Chem., 2017, vol. 129, pp. 11614–11617. https://doi.org/10.1002/ange.201704647

    Article  Google Scholar 

  206. Neel, A.J., Hilton, M.J., Sigman, M.S., and Toste, F.D., Nature, 2017, vol. 543, pp. 637–646. https://doi.org/10.1038/nature21701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tong, S., Li, J.T., Liang, D.D., Zhang, Y.E., Feng, Q.Y., Zhang, X., Zhu, J., and Wang, M.X., J. Am. Chem. Soc., 2020, vol. 142, pp. 14432–14436. https://doi.org/10.1021/jacs.0c05369

    Article  CAS  PubMed  Google Scholar 

  208. Proctor, R.S.J., Colgan, A.C., and Phipps, R.J., Nat. Chem., 2020, vol. 12, pp. 990–1004. https://doi.org/10.1038/s41557-020-00561-6

    Article  CAS  PubMed  Google Scholar 

  209. Liu, Y., Xi, X., Ye, C., Gong, T., Yang, Z., and Cui, Y., Angew. Chem., 2014, vol. 126, pp. 14041–14045. https://doi.org/10.1002/ange.201408896

    Article  Google Scholar 

  210. Zou, Y.Q., Jahović, I., and Nitschke, J.R., Chem., 2020, vol. 6, pp. 1217–1218. https://doi.org/10.1016/j.chempr.2020.05.009

    Article  CAS  Google Scholar 

  211. Bin Dong, Y., Wang, J.C., Kann, X., Shang, J.Y., and Qiao, H., J. Am. Chem. Soc., 2020, vol. 142, pp. 16915–16920. https://doi.org/10.1021/jacs.0c07461

    Article  CAS  PubMed  Google Scholar 

  212. Jiao, T., Qu, H., Tong, L., Cao, X., and Li, H., Angew. Chem. Int. Ed., 2021, vol. 60, pp. 9852–9858. https://doi.org/10.1002/anie.202100655

    Article  CAS  Google Scholar 

  213. Luo, N., Ao, Y., Wang, D., and Wang, Q., Angew. Chem. Int. Ed., 2021, vol. 60, pp. 20650–20655. https://doi.org/10.1002/anie.202106509

    Article  CAS  Google Scholar 

  214. Jing, X., He, C., Zhao, L., and Duan, C., Acc. Chem. Res., 2019, vol. 52, pp. 100–109. https://doi.org/10.1021/acs.accounts.8b00463

    Article  CAS  PubMed  Google Scholar 

  215. Maiti, B., Abramov, A., Pérez-Ruiz, R., and Díaz Díaz, D., Acc. Chem. Res., 2019, vol. 52, pp. 1865–1876. https://doi.org/10.1021/acs.accounts.9b00097

    Article  CAS  PubMed  Google Scholar 

  216. Cui, K., Dorner, I., and Mertens, S.F.L., Curr. Opin. Electrochem., 2018, vol. 8, pp. 156–163. https://doi.org/10.1016/j.coelec.2018.06.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Vatsadze.

Ethics declarations

The authors declare no conflicts of interest.

During the preparation of this review, no experiments on animals or humans were carried out.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatsadze, S.Z., Maximov, A.L. & Bukhtiyarov, V.I. Supramolecular Effects and Systems in Catalysis. A Review. Dokl Chem 502, 1–27 (2022). https://doi.org/10.1134/S0012500822010013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500822010013

Keywords:

Navigation