Skip to main content
Log in

Experimental and Calculation Investigation of the Efficiency of Nonanalytic Biodiesel Synthesis in Subcritical Methanol

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

It was experimentally determined for the first time that, for noncatalytic biodiesel synthesis, the dependence of the partial pressure of methanol on the mole fraction of methanol in rapeseed oil shows a pronounced negative deviation from Raoult’s law. Investigation of the change in the partial pressure of methanol in the noncatalytic reaction of the transesterification of rapeseed oil in 8 h of the reaction at 220°C demonstrated that the efficiency of the increase in the molar excess of methanol decreases, and, at a more than 10-fold molar excess, the amount of the reacted methanol remains unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kafarov, V.V. and Meshalkin, V.P., Analiz i sintez khimiko-tekhnologicheskikh sistem. Uchebnik dlya vuzov (Analysis and Synthesis of Chemical Technological Systems. A Textbook for High School), Moscow: Khimiya, 1991.

  2. Kusdiana, D. and Saka, S., Fuel, 2001, vol. 80, pp. 693–698.

    Article  CAS  Google Scholar 

  3. Ortiz, F.J.G., J. Supercrit. Fluids, 2020, vol. 160, p. 104788. https://doi.org/10.1016/j.supflu.2020.104788

    Article  CAS  Google Scholar 

  4. Meshalkin, V.P. and Khodchenko, S.M., Polym. Sci. Ser. D, 2017, vol. 10, no. 4, pp. 347–352. https://doi.org/10.1134/S1995421217040128

    Article  CAS  Google Scholar 

  5. Anastas, P. and Warner, J., Green Chemistry: Theory and Practice, New York: Oxford University Press, 1998.

    Google Scholar 

  6. Glišić, S.B. and Skala, D.U., J. Supercrit. Fluids, 2010, vol. 54, no. 1, pp. 71–80. https://doi.org/10.1016/j.supflu.2010.03.005

    Article  CAS  Google Scholar 

  7. Kanna, R., Int. J. Res. Appl. Sci. Eng. Technol., 2018, vol. 6, no. 1, pp. 1573–1574. https://doi.org/10.22214/ijraset.2018.1241

    Article  Google Scholar 

  8. Aghel, B., Mohadesi, M., and Sahraei, S., Chem. Eng. Technol., 2018, vol. 41, no. 3, pp. 598–605.

    Article  CAS  Google Scholar 

  9. Zhou, H., Lu, H., and Liang, B., J. Chem. Eng. Data, 2006, vol. 51, pp. 1130–1135. https://doi.org/10.1021/je0600294

    Article  CAS  Google Scholar 

  10. Diasakou, M., Louloudi, A., and Papayannakos, N., Fuel, 1998, vol. 77, pp. 1297–1302. https://doi.org/10.1016/S0016-2361(98)00025-8

    Article  CAS  Google Scholar 

  11. Mujeeb, M.A., Vedamurthy, A.B., and Shivasharana, C.T., Adv. Appl. Sci. Res., 2016, vol. 7, no. 1, pp. 120–133.

    Google Scholar 

  12. Kasim, N.S., Tsai, T.-H., Gunawan, S., et al., Bioresource Technol., 2008, vol. 100, no. 8, pp. 2399–2403. https://doi.org/10.1016/j.biortech.2008.11.041

    Article  CAS  Google Scholar 

  13. Shimoyama, Y., Iwai, Y., Jin, B.S., et al., Fluid Phase Equilib., 2007, vol. 257, no. 2, pp. 217–222. https://doi.org/10.1016/j.fluid.2007.01.034

    Article  CAS  Google Scholar 

  14. Glišić, S., Montoya, O., Orlović, A., et al., J. Serb. Chem. Soc., 2007, vol. 72, no. 1, pp. 13–27. https://doi.org/10.2298/JSC0701013G

    Article  CAS  Google Scholar 

  15. Sapunov, V.N., Kustov, A.V., Zhilin, V.F., et al., Khim. Prom-st Segodnya, 2012, no. 12, pp. 13–20.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18–29–24009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Voronov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, V.P., Sapunov, V.N., Kozlovskii, R.A. et al. Experimental and Calculation Investigation of the Efficiency of Nonanalytic Biodiesel Synthesis in Subcritical Methanol. Dokl Chem 493, 105–107 (2020). https://doi.org/10.1134/S0012500820370016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500820370016

Keywords:

Navigation