Doklady Chemistry

, Volume 484, Issue 2, pp 64–67 | Cite as

Hierarchically Structured, Highly Porous Nickel Synthesized in Sintering–Evaporation Process from a Metal Nanopowder and a Space Holder

  • A. G. Gnedovets
  • V. A. Zelenskii
  • A. B. Ankudinov
  • M. I. AlymovEmail author


Permeable (~70% porosity) nickel with a pronounced hierarchical structure was synthesized by powder metallurgy methods in sintering–evaporation process from a nickel nanopowder and an ammonium bicarbonate micropowder as a space holder. The obtained porous nickel contained pores of three spatial scales: macropores (30–50 μm in size), their connecting windows (5–10 μm), and interparticle micropores (less than 1 μm) in the walls of macropores. The produced material is characterized by a network of interpenetrating macropores and by a developed surface of their walls consisting of several layers of sintered nickel nanoparticles.



This work was supported by the Russian Science Foundation (project no. 17–03–00337-a) and the Presidium of the Russian Academy of Sciences (program no. 34P). The electron microscopy studies were supported by State Assignment no. 007–00129–18–00.


  1. 1.
    Kränzlin, N. and Niederberger, M., Mater. Horizons, 2015, vol. 2, no. 4, pp. 359–377.CrossRefGoogle Scholar
  2. 2.
    Stanev, L., Kolev, M., Drenchev, B., and Drenchev, L., J. Sci. Eng., 2017, vol. 139, no. 5, p. 050801.Google Scholar
  3. 3.
    Singh, S. and Bhatnagar, N., J. Porous Mater., 2017, vol. 24, pp. 1–18.CrossRefGoogle Scholar
  4. 4.
    Laptev, A., Bram, M., Buchkremer, H.P., and Stover, D., Powder Metall., 2004, vol. 47, no. 1, pp. 85–92.CrossRefGoogle Scholar
  5. 5.
    Zhao, Y.Y. and Sun, D.X., Scr. Mater., 2001, vol. 1, pp. 105–110.CrossRefGoogle Scholar
  6. 6.
    Yuan, Z.Y. and Su, B.L., J. Mater. Chem., 2006, vol. 16, no. 7, pp. 663–677.CrossRefGoogle Scholar
  7. 7.
    Izaak, T.I. and Vodyankina, O.V., Usp. Khim., 2009, vol. 78, no. 1, pp. 80–92.CrossRefGoogle Scholar
  8. 8.
    Despois, J.F. and Mortensen, A., Acta Mater., 2005, vol. 53, no. 5, pp. 1381–1388.CrossRefGoogle Scholar
  9. 9.
    Gibson, L.G. and Ashby, M.F., Cellular Solids, Structures, and Properties, 2nd ed., Cambridge: University Press, 1997.CrossRefGoogle Scholar
  10. 10.
    Nickel, Cobalt, and Their Alloys, Davis, J.R., Ed., ASM International, 2000.Google Scholar
  11. 11.
    Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelenskii, V.A., Ankudinov, A.B., Kovalev, I.D., Kochetkov, R.A., Shchukin, A.S., Petrov, E.V., and Kochetov, N.A., Nanotechnol. Russ., 2017, vol. 12, no. 11/12, pp. 577–582.Google Scholar
  12. 12.
    Mondal, D.P., Jain, H., Das, S., and Jha, A.K., Mater. Design, 2015, vol. 88, pp. 430–437.CrossRefGoogle Scholar
  13. 13.
    Lakes, R., Nature, 1993, vol. 361, pp. 511–515.CrossRefGoogle Scholar
  14. 14.
    Perez-Ramirez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., and Groen, J.C., Chem. Soc. Rev., 2008, vol. 37, no. 11, pp. 2530–2542.CrossRefGoogle Scholar
  15. 15.
    Alymov, M.I., Poroshkovaya metallurgiya nanokristallicheskikh materialov (Powder Metallurgy of Nanocrystalline Materials), Moscow: Nauka, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Gnedovets
    • 1
  • V. A. Zelenskii
    • 1
  • A. B. Ankudinov
    • 1
  • M. I. Alymov
    • 1
    Email author
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations