Advertisement

Doklady Chemistry

, Volume 480, Issue 1, pp 77–80 | Cite as

Porphyrin Derivatives of Macrocyclic Tetraindoles: Synthesis and Chemical Transformations

  • A. Ya. Vainer
  • K. M. Dyumaev
  • A. M. Kovalenko
  • N. V. Barannik
  • K. I. Zelikson
  • S. V. Kotov
Chemistry
  • 15 Downloads

Abstract

Polyphenols chemically bonded to a molecular platform based on macrocyclic tetraindole porphyrin derivatives were synthesized for the first time. The tetraindole was prepared by two-step tetramerization of 3-(4′-bromophenyl)-4,6-dimetoxyindole. Polyphenols of this type were obtained by the Suzuki–Miyaura reaction between bromo-containing cyclic tetraindole and monoboryl-substituted porphyrin. The subsequent transformations of this molecular construction gave rise to epoxidized polyphenol on a tetraindole support, which served for the development of a new negative resist for electron-beam nanolithography. The resist can form patterns with a 12 nm resolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, F., Li, X.-C., Lai, W.-Y., et al., Org. Lett., 2014, vol. 16, no. 11, pp. 2942–2945.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen, R., Bhadbhade, M., Kumar, N., and Black, D.St.C., Tetrahedron Lett., 2012, vol. 59, no. 26, pp. 3337–3341.CrossRefGoogle Scholar
  3. 3.
    Nakamura, S., Hiroto, S., and Shinokubo, H., Chem. Sci., 2012, vol. 3, no. 2, pp. 524–527.CrossRefGoogle Scholar
  4. 4.
    Nakamura, S., Kondo, T., Hiroto, S., and Shinokubo, H., Asian J. Org. Chem., 2013, vol. 2, no. 4, pp. 312–319.CrossRefGoogle Scholar
  5. 5.
    Qian, X., Gao, H.-H., Zhu, Y.-Z., et al., Dyes Pigm., 2015, vol. 121, no. 10, pp. 152–158.CrossRefGoogle Scholar
  6. 6.
    Ruiz, C., Monge, A., Gutierrez-Puebla, E., et al., Chem.–Eur. J., 2016, vol. 22, no. 30, pp. 10651–10660.CrossRefPubMedGoogle Scholar
  7. 7.
    Vainer, A.Ya., Dyumaev, K.M., Kovalenko, A.M., et al., Dokl. Chem., 2017, vol. 474, part 2, pp. 129–132.CrossRefGoogle Scholar
  8. 8.
    Black, D.St.C., Bowyer, M.C., Bowyer, P.K., et al., Aust. J. Chem., 1994, vol. 47, no. 9, pp. 1741–1750.CrossRefGoogle Scholar
  9. 9.
    Vainer, A.Ya., Dyumaev, K.M., Dragunskaya, R.M., et al., Dokl. Chem., 2015, vol. 461, part 1, pp. 70–74.CrossRefGoogle Scholar
  10. 10.
    Ishiyama, T., Murata, M., and Miyaura, N., Org. Chem., 1995, vol. 60, no. 23, pp. 7508–7510.CrossRefGoogle Scholar
  11. 11.
    Vainer, A.Ya., Dyumaev, K.M., Kovalenko, A.M., et al., Dokl. Chem., 2012, vol. 442, part 1, pp. 7–11.CrossRefGoogle Scholar
  12. 12.
    Walton, J.C., J. Chem. Soc., Perkin Trans., 1986, no. 10, pp. 1641–1646.CrossRefGoogle Scholar
  13. 13.
    Nishikubo, T., Iizawa, T., Takahashi, A., and Shimokawa, T., J. Polym. Sci.: Polym. Chem. Ed., 1990, vol. 28, no. 1, pp. 105–117.CrossRefGoogle Scholar
  14. 14.
    Vainer, A.Ya., Dyumaev, K.M., Kaminarskaya, Kh.B., and Kornienko, E.Yu., Dokl. Chem., 2000, vol. 435, part 1, pp. 275–278.CrossRefGoogle Scholar
  15. 15.
    Miyoshi, H. and Taniguchi, J., J. Vac. Sci. Technol. B, 2015, vol. 33, no. 6, pp. 06FD05-1-06FD05-7.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Ya. Vainer
    • 1
  • K. M. Dyumaev
    • 1
  • A. M. Kovalenko
    • 1
  • N. V. Barannik
    • 1
  • K. I. Zelikson
    • 1
  • S. V. Kotov
    • 1
  1. 1.All-Russian Research Institute of Medicinal and Aromatic PlantsMoscowRussia

Personalised recommendations