Doklady Chemistry

, Volume 475, Issue 1, pp 155–158 | Cite as

On the applicability of nanodiamonds produced by detonation synthesis for phenol testing in aqueous media

Chemical Technology

Abstract

It was found that the catalytic effect of modified nanodiamonds (MND) in the H2O2–4-aminoantipyrine–phenol oxidative azo coupling reaction is due to microimpurities of iron and copper ions on the surface of nanoparticles. The efficiency of MND as a catalyst is determined by the amount of surface impurities of these ions and can be doubled by their additional adsorption on nanoparticles. Using MND for phenol indication ensures a linear yield of the colored product of the azo coupling reaction over an analyte concentration range of 0.05–10 μg/mL. The possibility of reusing MND for phenol testing in aqueous samples was demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Y. and Hu, S., J. Nanosci. Nanotechnol., 2016, vol. 16, pp. 7852–7872.CrossRefGoogle Scholar
  2. 2.
    Yin, M., Zhao, L., Wei, Q., and Li, H., RSC Adv., 2015, vol. 5, pp. 32897–32901.CrossRefGoogle Scholar
  3. 3.
    Hatamie, A., Zargar, B., and Jalali, A., Talanta, 2014, vol. 121, pp. 234–238.CrossRefGoogle Scholar
  4. 4.
    Drugov Yu.S. and Rodin A.A. Monitoring organicheskikh zagryaznenii prirodnoi sredy: prakticheskoe rukovodstvo (Monitoring of Organic Environmental Contaminants: A Practice Guidebook). Moscow: Binom, Laboratoriya Znanii, 2013.Google Scholar
  5. 5.
    Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., Gunten, U., and Wehrli, B., Environ. Resources, 2010, vol. 35, pp. 109–136.CrossRefGoogle Scholar
  6. 6.
    Wasi, S., Tabrez, S., and Ahmad, M., Environ. Monit. Assess, 2013, vol. 185, pp. 2585–2593.CrossRefGoogle Scholar
  7. 7.
    Bondar, V.S. and Puzyr, A.P., Fiz. Tverd. Tela, 2004, vol. 46, pp. 698–701.Google Scholar
  8. 8.
    Puzyr, A.P. and Bondar, V.S., RF Patent 2252192, Byull. Izobret., 2005, no. 14.Google Scholar
  9. 9.
    Bondar, V.S., Purtov, K.V., Puzyr, A.P., Baron, A.V., and Gitel’zon, I.I., Dokl. Biochem. Biophys., 2008, vol. 418, pp. 11–13.CrossRefGoogle Scholar
  10. 10.
    Ronzhin, N.O., Puzyr, A.P., Burov, A.E., and Bondar, V.S., J. Biomater. Nanobiotech., 2014, vol. 5, pp. 173–178.CrossRefGoogle Scholar
  11. 11.
    Puzyr, A.P., Bondar, V.S., Bukayemsky, A.A., Selyutin, G.E., and Kargin, V.F., NATO Sci. Ser. II. Math. Phys. Chem., 2005, vol. 92, pp. 261–270.Google Scholar
  12. 12.
    Puzyr, A.P., Burov, A.E., and Bondar, V.S., Full. Nanotub. Carb. Nanostruct., 2015, vol. 23, pp. 93–97.CrossRefGoogle Scholar
  13. 13.
    Gibson, N., Shenderova, O., Luo, T.J.M., Moseenkiv, S., Bondar, V., Puzyr, A., Purtov, K., Fitzgerald, Z., and Brenner, D.W., Diam. Relat. Mater., 2009, vol. 18, pp. 620–626.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations