Skip to main content
Log in

Metabolite Profile of the Micromycete Lecanicillium gracile Isolated from Plaster and Limestone

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

Lecanicillium gracile is a recently described micromycete species isolated from mineral-based building materials (plaster and limestone) in interiors of cultural heritage sites in Russia. In this work, the composition of L. gracile metabolites, as well as of the culture liquid, have been characterized. The results suggest that L. gracile is a promising candidate for the search for novel biologically active compounds. During the exponential growth phase, the diversity of metabolites in the mycelium was low; the metabolome profile demonstrated predominant accumulation of monosaccharides and polyols. In the stationary phase, the metabolite diversity in the L. gracile mycelium was high; apparently, at this stage biosynthesis dominated over energy-producing processes. L. gracile synthesized extracellular polymer compounds and shifted medium рН to the alkaline range. When fungi are developing on rock substrates, their extracellular polymer matrix not only serves to facilitate the formation of biofilms with other microorganisms of lithobiont communities, but also, at alkaline pH values, it promotes the formation of secondary calcite on calcium-containing substrates, such as limestone and marble. That is, L. gracile possesses certain biochemical traits that facilitate its long-term growth on rock substrates and reflect the specific character of interactions between the fungus and the substrate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. AMDIS. 2022. http://www.amdis.net/index.html. Accessed April 15, 2022.

  2. Anbu, P., Kang, C.-H., Shin, Y.-J., et al., Formations of calcium carbonate minerals by bacteria and its multiple applications, SpringerPlus, 2016, vol. 5, p. 250.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boniek, D., MendesIsolda, I.C., Abreu, C.M., et al., Ecology and identification of environmental fungi and metabolic processes involved in the biodeterioration of Brazilian soapstone historical monuments, Lett. Appl. Microbiol., 2017, vol. 65, no. 5, pp. 1–8.

    Article  Google Scholar 

  4. De Leo, F. and Urzi, C., Microfungi from deteriorated materials of cultural heritage, in Fungi from Different Substrates, Misra, J.K., Ed., New York: CRC Press, Taylor and Francis Group, 2015, pp. 144–158.

    Google Scholar 

  5. Fernandes, P., Applied microbiology and biotechnology in the conservation of stone cultural heritage materials, Appl. Microbiol. Biotechnol., 2006, vol. 73, pp. 291–296.

    Article  CAS  PubMed  Google Scholar 

  6. Fiehn, O., Metabolomics—the link between genotypes and phenotypes, Plant Mol. Biol., 2002, vol. 48, pp. 155– 171.

    Article  CAS  PubMed  Google Scholar 

  7. Gadd, G.M., Geomicrobiology of the built environment, Nat. Microbiol., 2017, vol. 2, no. 4, pp. 1–9.

    Article  Google Scholar 

  8. Gadd, G.M., Geomycology: Biogeochemical transformations of rocks, minerals, metals, and radionuclides by fungi, bioweathering, and bioremediation, Mycol. Res., 2007, vol. 111, no. 1, pp. 3–49.

    Article  CAS  PubMed  Google Scholar 

  9. Gadd, G.M., Metals, minerals, and microbes: Geomicrobiology and bioremediation, Microbiology, 2010, vol. 156, no. 3, pp. 609–643.

    Article  CAS  PubMed  Google Scholar 

  10. Gaylarde, C.C. and Morton, L.G., Deteriogenic biofilms on buildings and their control: A review, Biofouling, 1999, vol. 14, pp. 59–74.

    Article  Google Scholar 

  11. Gorbushina, A.A., Life on the rocks, Environ. Microbiol., 2007, vol. 9, pp. 1613–1631.

    Article  CAS  PubMed  Google Scholar 

  12. Gorbushina, A.A. and Krumbein, W.E., Role of organisms in wear down of rocks and minerals, in Microorganisms in Soils: Roles in Genesis and Functions, Varma, A. and  Buscot, F., Eds., Berlin: Springer-Verlag, 2005, pp. 59–84.

    Google Scholar 

  13. Gorbushina, A.A. and Petersen, K., Distribution of microorganisms on ancient wall paintings as related to associated faunal elements, Int. Biodeterior. Biodegrad., 2000, vol. 46, pp. 277–284.

    Article  CAS  Google Scholar 

  14. Grum-Grzhimaylo, A.A., Georgieva, M.L., Bondarenko, S.A., et al., On the diversity of fungi from soda soils, Fungal Diversity, 2016, vol. 76, pp. 27–74.

    Article  Google Scholar 

  15. Guy, C., Kaplan, F., Kopka, J., et al., Metabolomics of temperature stress, Physiol. Plant., 2008, vol. 132, no. 2, pp. 220–235.

    CAS  PubMed  Google Scholar 

  16. Harding, M.W., Marques, L.L., Howard, R.J., et al., Can filamentous fungi form biofilms?, Trends Microbiol., 2009, vol. 17, no. 11, pp. 475–480.

    Article  CAS  PubMed  Google Scholar 

  17. Ja, E.K., Hong, S.K., Shin, Y.J., et al., LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression, Exp. Mol. Med., 2008, vol. 40, no. 5, pp. 514–522.

    Article  Google Scholar 

  18. Karpovich-Tate, N. and Rebrikova, N.L., Microbial communities on damaged frescoes and building materials in the cathedral of the Nativity of the Virgin in the Pafnutii-Borovskii monastery, Int. Biodegrad., 1990, vol. 27, pp. 281–296.

    Article  Google Scholar 

  19. Kim, B.H., Roh, E., Lee, H.Y., et al., Benzoxathiole derivative blocks lipopolysaccharide-induced nuclear factor-κB activation and nuclear factor-κB-regulated gene transcription through inactivating inhibitory κB kinase β, Mol. Pharmacol., 2008, vol. 73, no. 4, pp. 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  20. Kozlova, M.V., Bilanenko, E.N., Grum-Grzhimay-lo, A.A., et al., An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus, Fungal Biol., 2019, vol. 123, no. 2, pp. 140–150.

    Article  CAS  PubMed  Google Scholar 

  21. Kurakov, A.V., Somova, N.G., and Ivanovskiy, R.N., Micromycetes populating limestone and red brick surfaces of the Novodevichiy convent masonry, Microbiology, 1999, vol. 68, no. 2, pp. 273–282.

    Google Scholar 

  22. Liu, B., Fu, R., Wu, B., et al., Rock-inhabiting fungi: Terminology, diversity, evolution, and adaptation mechanisms, Mycology, 2021, vol. 13, no. 1, pp. 1–31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martino, P.D., What about biofilms on the surface of stone monuments?, Open Conf. Proc. J., 2016, vol. 9, pp. 14–28. https://doi.org/10.2174/2210289201607020014

    Article  CAS  Google Scholar 

  24. Morton, L.H.G. and Surman, S.B., Biofilms in biodeterioration—a review, Int. Biodeterior. Biodegrad., 1994, vol. 34, pp. 203–221.

    Article  CAS  Google Scholar 

  25. Okazaki, Y. and Saito, K., Recent advances of metabolomics in plant biotechnology, Plant Biotechnol. Rep., 2012, vol. 6, no. 1, pp. 1–15.

    Article  PubMed  Google Scholar 

  26. Parizi, M.H., Sharifi, I., Farajzadeh, S., et al., Tioxolone niosomes exert antileishmanial effects on Leishmania tropica by promoting promastigote apoptosis and immunomodulation, Asian Pac. J. Trop. Med., 2019, vol. 12, no. 8, pp. 365–374.

    Article  CAS  Google Scholar 

  27. Perfect, J.R., Tenor, J.L., Miao, Y., et al., Trehalose pathway as an antifungal target, Virulence, 2017, vol. 8, no. 2, pp. 143–149.

    Article  CAS  PubMed  Google Scholar 

  28. Ponizovskaya, V.B., Bilanenko, E.N., Mokeeva, V.L., et al., Micromycetes as colonizers of mineral building materials in historic monuments and museums, Fungal Biol., 2019, vol. 123, no. 4, pp. 290–306.

    Article  CAS  PubMed  Google Scholar 

  29. Ponizovskaya, V.B., Grum-Grzhimaylo, A.A., Georgieva, M.L., et al., Lecanicillium gracile (Cordycipitaceae), a new species isolated from mineral building materials, Phytotaxa, 2020, vol. 443, no. 3, pp. 265–278.

    Article  Google Scholar 

  30. Portnoy, T., Margeot, A., Linke, R., et al., The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation, BMC Genomics, 2011, vol. 12, p. 269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prieto, B., Vázquez-Nion, D., Fuentes, E., et al., Response of subaerial biofilms growing on stone-built cultural heritage to changing water regime and CO2 conditions, Int. Biodeterior. Biodegrad., 2020, vol. 148, p. 104882.

    Article  CAS  Google Scholar 

  32. Rousk, J. and Bengtson, P., Microbial regulation of global biogeochemical cycles, Front. Microbiol., 2014, vol. 5, p. 103.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salvadori, O. and Municchia, A.C., The role of fungi and lichens in the biodeterioration of stone monuments, Open Conf. Proc. J., 2015, vol. 6, no. S1, pp. 70–82.

    Google Scholar 

  34. Sand, W., Microbial mechanisms of deterioration of inorganic substrates—a general mechanistic overview, Int. Biodeterior. Biodegrad., 1997, vol. 40, nos. 2–4, pp. 183–190.

    Article  CAS  Google Scholar 

  35. Savadogo, A.C., Ouattara, A.T., Savadogo, P.W., et al., Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples, Afr. J. Biotechnol., 2004, vol. 3, no. 3, pp. 189–194.

    CAS  Google Scholar 

  36. Sazanova, K., Psurtseva, N., and Shavarda, A., Metabolomic changes in wood inhabiting filamentous fungi during ontogenesis, in Metabolomics. Methodology, and Applications in Medical Sciences and Life Sciences, London: IntechOpen, 2021, pp. 137–156.

    Google Scholar 

  37. Sazanova, K.V., Frank-Kamenetskaya, O.V., Vlasov, D.Y., et al., Carbonate and oxalate crystallization by interaction of calcite marble with Bacillus subtilis and Bacillus subtilisAspergillus niger association, Crystals, 2020, vol. 10, p. 756.

    Article  CAS  Google Scholar 

  38. Sazanova, K.V., Psurtseva, N.V., and Shavarda, A.L., Cultural and metabolomic studies of a new phtalides producer, Lignomyces vetlinianus (Agaricomycetes), Int. J. Med. Mushrooms, 2018, vol. 20, no. 11, pp. 1031–1045.

    Article  PubMed  Google Scholar 

  39. Sazanova, K.V., Zelenskaya, M.S., Bobir, S.Yu., et al., Micromycetes in biofilms on stone monuments of St. Petersburg, Mikol. Fitopatol., 2020, vol. 54, no. 5, pp. 329–339.

    Google Scholar 

  40. azanova, K.V., Zelenskaya, M.S., Vlasov, A.D., et al., Microorganisms in superficial deposits on the stone monuments in Saint Petersburg, Microorganisms, 2022, vol. 10, no. 2, p. 316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smedsgaard, J. and Nielsen, J., Metabolite profiling of fungi and yeast: From phenotype to metabolome by MS and informatics, J. Exp. Bot., 2005, vol. 56, no. 410, pp. 273–286.

    Article  CAS  PubMed  Google Scholar 

  42. Taxonomy Browser, 2022. https://www.ncbi.nlm.nih. gov/Taxonomy/Browser/wwwtax.cgi. Accessed April 15, 2022.

  43. UniChrom, 2022. http://www.unichrom.com/unichrome.shtml. Accessed April 15, 2022.

  44. Verdier, T., Coutand, M., Bertron, A., et al., A review of indoor microbial growth across building materials and sampling and analysis methods, Build. Environ., 2014, vol. 80, pp. 136–149

    Article  Google Scholar 

  45. Villa, F. and Cappitelli, F., The ecology of subaerial biofilms in dry and inhospitable terrestrial environments, Microorganisms, 2019, vol. 7, no. 10, p. 380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villa, F., Stewart, P.S., Klapper, I., et al., Subaerial biofilms on outdoor stone monuments: Changing the perspective toward an ecological framework, BioScience, 2016, vol. 66, no. 4, pp. 285–294.

    Article  Google Scholar 

  47. Warscheid, T. and Braams, J., Biodeterioration of stone: A review, Int. Biodeterior. Biodegrad., 2000, vol. 46, no. 4, pp. 343–368.

    Article  CAS  Google Scholar 

  48. Zare, R. and Gams, W., A revision of Verticillium sect. Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov., Nova Hedwigia, 2001, vol. 73, pp. 1–50.

    Article  Google Scholar 

  49. Zhu, T. and Dittrich, M., Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review, Front. Bioeng. Biotechnol., 2016, vol. 4, no. 4.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-74-00031 “Fungi and Bacteria in Biogeochemical Cycles: Trophic and Allelopathic Interactions; Role in Detoxication of Metals”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Sazanova or V. B. Ponizovskaya.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interests.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanova, K.V., Ponizovskaya, V.B. Metabolite Profile of the Micromycete Lecanicillium gracile Isolated from Plaster and Limestone. Dokl Biol Sci 507, 456–462 (2022). https://doi.org/10.1134/S0012496622060205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060205

Keywords:

Navigation