Skip to main content
Log in

Position of Algae on the Tree of Life

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Notes

  1. A chloroplast is understood here as a plastid (not only a green one) wherein photosynthesis takes place.

  2. The division was described in 2020 (Li et al., 2020); members of the division were earlier classed with Chlorophyta.

  3. Because Prymnesium Massart is the type genus of the division, Prymnesiophyta is the correct division name. However, the name Haptophyta is more often used for the division in the literature.

  4. The group name was more recently changed to CASH (Cryptophyta, Alveolata (including Dinophyta), Stramenopila (including Ochrophyta), Haptophyta) (for more detail, see Petersen et al., 2014).

  5. Meaning chloroplasts that originate from an ancestral red alga.

  6. The clade CRuMs includes Collodictyonidae + Rigifilida + Mantamonas.

  7. Charophyte algae belong to the group Streptophyta together with vascular plants and bryophytes. Characteristics are given here to the division Charophyta, which includes all algal classes that belong to the Streptophyta lineage (see (Frey, 2015)).

  8. A conoid is a hollow conical structure that consists of tubulin fibers and is a component of the apical complex, which is involved in cell penetration and nutrition.

  9. A micropore is a cell surface depression used to assimilate nutrients.

REFERENCES

  1. Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., et al., Revisions to the classification, nomenclature, and diversity of eukaryotes, J. Eukaryotic Microbiol., 2019, vol. 66, no. 1, pp. 4–119.

    Article  Google Scholar 

  2. Adl, S.M., Simpson, A.G.B., Farmer, M.A., Ander-sen, R.A., Anderson, O.R., Barta, J.R., et al., The new higher level classification of eukaryotes with emphasis on the taxonomy of protists, J. Eukaryotic Microbiol., 2005, vol. 52, no. 5, pp. 399–451.

    Article  Google Scholar 

  3. Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukeš, J., Bass, D., Bowser, S.S., Brown, M.W., Burki, F., Dunthorn, M., Hampl, V., et al., The revised classification of eukaryotes, J. Eukaryotic Microbiol., 2012, vol. 59, no. 5, pp. 429–493.

    Article  Google Scholar 

  4. Allen, J.F., Thake, B., and Martin, W.F., Nitrogenase inhibition limited oxygenation of Earth’s Proterozoic atmosphere, Trends Plant Sci., 2019, vol. 24, no. 11, pp. 1022–1031.

    Article  CAS  PubMed  Google Scholar 

  5. Archibald, J.M. and Keeling, P.J., Recycled plastids: A “green movement” in eukaryotic evolution, Trends Genet., 2002, vol. 18, no. 11, pp. 577–584.

    Article  CAS  PubMed  Google Scholar 

  6. Handbook of the Protists, Archibald, J.M., Simp-son, A.G.B., and Slamovits, C.H., Eds., Cham, 2017.

    Google Scholar 

  7. Baldauf, S.L., An overview of the phylogeny and diversity of eukaryotes, J. Syst. Evol., 2008, vol. 46, no. 3, pp. 263–273.

    Google Scholar 

  8. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F., A kingdom-level phylogeny of eukaryotes based on combined protein data, Science, 2000, vol. 290, pp. 972–977.

    Article  CAS  PubMed  Google Scholar 

  9. Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., Roger, A.J., Gertraud, B., Lang, B.F., and Philippe, H., Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles, Mol. Biol. Evol., 2010, vol. 27, no. 7, pp. 1698–1709.

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya, D., Archibald, J.M., Weber, A.P., and Reyes-Prieto, A., How do endosymbionts become organelles? Understanding early events in plastid evolution, Bioessays, 2007, vol. 29, no. 12, pp. 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  11. Bodył, A., Stiller, J.W., and Mackiewicz, P., Chromalveolate plastids: Direct descent or multiple endosymbioses?, Trends Ecol. Evol., 2009, vol. 24, no. 3, pp. 119–121.

    Article  PubMed  Google Scholar 

  12. Burki, F., The convoluted evolution of eukaryotes with complex plastids, Adv. Bot. Res., 2017, vol. 84, pp. 1–30.

    Article  CAS  Google Scholar 

  13. Burki, F., Kaplan, M., Tikhonenkov, D.V., Zlatogursky, V., Minh, B.Q., Radaykina, L.V., Smirnov, A., Mylnikov, A.P., and Keeling, P.J., Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta, and Cryptista, Proc. R. Soc. B, 2016, vol. 283, p. 20152802.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burki, F., Okamoto, N., Pombert, J-F., and Keeling, P.J. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins, Proc. R. Soc. B, 2012, vol. 279, pp. 2246–2254.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burki, F., Roger, A.J., Brown, M.W., and Simpson, A.G., The new tree of eukaryotes, Trends Ecol. Evol., 2020, vol. 35, no. 1, pp. 43–55.

    Article  PubMed  Google Scholar 

  16. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjæveland, Å., Nikolaev, S.I., Jakobsen, K.S., and Pawlow-ski, J., Phylogenomics reshuffles the eukaryotic supergroups, PLoS One, 2007, vol. 2, no. 8, p. e790.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cavalier-Smith, T., The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella, BioSystems, 1978, vol. 10, nos. 1–2, pp. 93–114.

    Article  CAS  PubMed  Google Scholar 

  18. Cavalier-Smith, T., Eukaryote kingdoms: seven or nine?, BioSystems, 1981, vol. 14, nos. 3–4, pp. 461–481.

  19. Cavalier-Smith, T., Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree, J. Eukaryotic Microbiol., 1999, vol. 46, pp. 347–366.

    Article  CAS  Google Scholar 

  20. Cavalier-Smith, T., Membrane heredity and early chloroplast evolution, Trends Plant Sci., 2000, vol. 5, no. 4, pp. 174–182.

    Article  CAS  PubMed  Google Scholar 

  21. Couradeau, E., Benzerara, K., Gerard, E., Moreira, D., Bernard, S., Brown, G.E., Jr., and López-García, P., An early-branching microbialite cyanobacterium forms intracellular carbonates, Science, 2012, vol. 336, pp. 459–462.

    Article  CAS  PubMed  Google Scholar 

  22. Delaye, L., Valadez-Cano, C., and Pérez-Zamorano, B., How really ancient is Paulinella chromatophora?, PLoS Curr., 2016.

  23. Syllabus of Plant Families, A. Engler’s Syllabus der Pflanzenfamilien. Blue-green Algae, Myxomycetes and Myxomycete-Like Organisms, Phytoparasitic Protists, Heterotrophic Heterokontobionta and Fungi, Frey, W., Ed., Stuttgart, 2012, Part 1/1.

  24. Syllabus of Plant Families, A. Engler’s Syllabus der Pflanzenfamilien. Photoautotrophic eukaryotic Algae. Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta, Frey, W., Ed., Stuttgart, 2015, Part 2/1.

  25. Syllabus of Plant Families, A. Engler’s Syllabus der Pflanzenfamilien. Photoautotrophic eukaryotic Algae. Rhodophyta, Frey, W., Ed., Stuttgart, 2017, Part 2/2.

  26. Gawryluk, R.M.R., Tikhonenkov, D.V., Hehenber-ger, E., Husnik, F., Mylnikov, A.P., and Keeling, P.J., Non-photosynthetic predators are sister to red algae, Nature, 2019, vol. 572, pp. 240–243.

    Article  CAS  PubMed  Google Scholar 

  27. Gómez, F., Diversity and classification of dinoflagellates, in Dinoflagellates. Classification, Evolution, Physiology, and Ecological Significance, 2020, pp. 1–38.

    Google Scholar 

  28. Guiry, M.D., How many species of algae are there?, J. Phycol., 2012, vol. 48, no. 5, pp. 1057–1063.

    Article  PubMed  Google Scholar 

  29. Hackett, J.D., Su Yoon, H., Li, S., Reyes-Prieto, A., Rümmele, S.E., and Bhattacharya, D., Phylogenomic analysis supports the monophyly of Cryptophytes and Haptophytes and the association of Rhizaria with Chromalveolates, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  30. Hehenberger, E., Imanian, B., Burki, F., and Kee-ling, P.J., Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts, Genome Biol. Evol., 2014, vol. 6, no. 9, pp. 2321–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hrdá, Š., Fousek, J., Szabova, J., Hampl, V., and Vlček, Č., The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids, PLoS One, 2012, vol. 7, no. 3, p. e33746.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Janouškovec, J., Horák, A., Oborník, M., Lukeš, J., and Keeling, P.J., A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids, Proc. Natl. Acad. Sci., 2010, vol. 107, no. 24, pp. 10949–10954.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Junge, W., Oxygenic photosynthesis: history, status and perspective, Q. Rev. Biophys., 2019, vol. 52, no. e1, pp. 1–17.

    Article  Google Scholar 

  34. Keeling, P.J., Hacrobia Okamoto and Keeling 2009, Version 28, October 2009 (under construction).

  35. Keeling, P.J., The endosymbiotic origin, diversification and fate of plastids, Philos. Trans. R. Soc., B, 2010, vol. 365, pp. 729–748.

  36. Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., Roger, A.J., and Gray, M.W., The tree of eukaryotes, Trends Ecol. Evol., 2005, vol. 20, no. 12, pp. 670–676.

    Article  PubMed  Google Scholar 

  37. Kim, E., Harrison, J.W., Sudek, S., Jones, M.D., Wilcox, H.M., Richards, T.A., Worden, A.Z., and Archibald, J.M., Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life, Proc. Natl. Acad. Sci., 2011, vol. 108, no. 4, pp. 1496–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lax, G., Eglit, Y., Eme, L., Bertrand, E.M., Roger, A.J., and Simpson, A.G.B., Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes, Nature, 2018, vol. 564, pp. 410–414.

    Article  CAS  PubMed  Google Scholar 

  39. Letunic, I. and Bork, P., Interactive tree of life (iTOL) v4: Recent updates and new developments, Nucleic Acids Res., 2019, vol. 47, no. W1, pp. W256–W259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lhee, D., Ha, J.S., Kim, S., Park, M.G., Bhattacharya, D., and Yoon, H.S., Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species, Sci. Rep., 2019, vol. 9, p. 2560.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, L.Z., Wang, S., Kumar Sahu, S., Marin, B., Li, H.Y., Xu, Y., Liang, H.P., Li, Z., Cheng, S.F., Reder, T., Cebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H.L., Yang, H.M., Wang, J., Wong, G.K.-S., Xu, X., Liu, X., Van de Peer, Y., Melkonian, M., and Liu, H., The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants, Nat. Ecol. Evol., 2020, vol. 4, pp. 1220–1231.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Linnæus, C., Systema Naturæ, Sive Regna Tria Naturæ Systematice Proposita per Classes, Ordines, Genera, and Species, Leiden, 1735.

    Google Scholar 

  43. Löffelhardt, W., Bohnert, H.J., Bryant, D.A., and Hagemann, R., The cyanelles of Cyanophora paradoxa, Crit. Rev. Plant Sci., 1997, vol. 16, no. 4, pp. 393–413.

    Article  Google Scholar 

  44. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, no. 7488, pp. 307–315.

    Article  CAS  PubMed  Google Scholar 

  45. Margulis, L., Five-kingdom classification and the origin and evolution of cells, in Evolutionary Biology, New York, 1974, pp. 45–78.

  46. Margulis, L. and Chapman, M.J., Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth, London, 2009.

  47. Marin, B., Nowack, E.C., and Melkonian, M., A plastid in the making: evidence for a second primary endosymbiosis, Protist, 2005, vol. 156, no. 4, pp. 425–432.

    Article  CAS  PubMed  Google Scholar 

  48. Moore, R.B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D.H., Wright, S.W., Davies, N.W., Bolch, C.J.S., Heimann, K., Šlapeta, J., Hoegh-Guldberg, O., Logsdon, Jr.J.M., and Carter, D.A., A photosynthetic alveolate closely related to apicomplexan parasites, Nature, 2008, vol. 451, no. 7181, pp. 959–963.

    Article  CAS  PubMed  Google Scholar 

  49. Oborník, M., Modrý, D., Lukeš, M., Černotíková-Stříbrná, E., Cihlář, J., Tesařová, M., Kotabová, E., Vancová, M., Prášil, O., and Lukeš, J., Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef, Protist, 2012, vol. 163, no. 2, pp. 306–323.

    Article  PubMed  Google Scholar 

  50. Okamoto, N., Chantangsi, C., Horák, A., Leander, B.S., and Keeling, P.J., Molecular phylogeny and description of the novel Katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov., PLoS One, 2009, vol. 4, no. 9, p. e7080.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Petersen, J., Ludewig, A.K., Michael, V., Bunk, B., Jarek, M., Baurain, D., and Brinkmann, H., Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages), Genome Biol. Evol., 2014, vol. 6, no. 3, pp. 666–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfanzagl, B., Zenker, A., Pittenauer, E., Allmaier, G., Martinez-Torrecuadrada, J., Schmid, E.R., De Pedro, M.A., and Löffelhardt, W., Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: A prokaryotic cell wall as part of an organelle envelope, J. Bacteriol., 1996, vol. 178, no. 2, pp. 332–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ponce-Toledo, R.I., Deschamps, P., López-García, P., Zivanovic, Y., Benzerara, K., and Moreira, D., An early-branching freshwater cyanobacterium at the origin of plastids, Curr. Biol., 2017, vol. 27, no. 3, pp. 386–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiu, H., Yang, E.C., Bhattacharya, D., and Yoon, H.S., Ancient gene paralogy may mislead inference of plastid phylogeny, Mol. Biol. Evol., 2012, vol. 29, no. 11, pp. 3333–3343.

    Article  CAS  PubMed  Google Scholar 

  55. Ragon, M., Benzerara, K., Moreira, D., Tavera, R., and López-García, P., 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization, Front. Microbiol., 2014, vol. 5, p. 331.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rogers, M.B., Gilson, P.R., Su, V., McFadden, G.I., and Keeling, P.J., The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts, Mol. Biol. Evol., 2007, vol. 24, no. 1, pp. 54–62.

    Article  CAS  PubMed  Google Scholar 

  57. Saldarriaga, J.F., Taylor, F.J.R., Keeling, P.J., and Cavalier-Smith, T., Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements, J. Mol. Evol., 2001, vol. 53, no. 3, pp. 204–213.

    Article  CAS  PubMed  Google Scholar 

  58. Saldarriaga, J.F., Cavalier-Smith, T., Menden-Deuer, S., and Keeling, P.J., Molecular data and the evolutionary history of dinoflagellates, Eur. J. Protistol., 2004, vol. 40, no. 1, pp. 85–111.

    Article  Google Scholar 

  59. Sánchez-Baracaldo, P., Raven, J.A., Pisani, D., and Knoll, A.H., Early photosynthetic eukaryotes inhabited low-salinity habitats, Proc. Natl. Acad. Sci., 2017, vol. 114, no. 37, pp. E7737–E7745.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sato, N., Endosymbiotic Theories of Organelles Revisited: Retrospects and Prospects, Singapore, 2019.

  61. Sato, N., Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event?, J. Plant Res., 2020, vol. 133, no. 1, pp. 15–33.

    Article  CAS  PubMed  Google Scholar 

  62. Ševčíková, T., Horák, A., Klimeš, V., Zbránková, V., Demir-Hilton, E., Sudek, S., Jenkins, J., Schmutz, J., Přibyl, P., Fousek, J., Vlček, C., Lang, B.F., Oborník, M., Worden, A.Z., and Eliáš, M., Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte?, Sci. Rep., 2015, vol. 5, p. 10134.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Simpson, A.G. and Roger, A.J., Eukaryotic evolution: Getting to the root of the problem, Curr. Biol., 2002, vol. 12, no. 20, pp. R691–R693.

    Article  CAS  PubMed  Google Scholar 

  64. Sogin, M.L., Early evolution and the origin of eukaryotes, Curr. Opin. Genet. Dev., vol. 19911, no. 4, pp. 457–463.

  65. Stiller, J.W., Schreiber, J., Yue, J., Guo, H., Ding, Q., and Huang, J., The evolution of photosynthesis in chromist algae through serial endosymbiosis, Nat. Commun., 2014, vol. 5, p. 5764.

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki, S., Hirakawa, Y., Kofuji, R., Sugita, M., and Ishida, K.I., Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species, J. Plant Res., 2016, vol. 129, no. 4, pp. 581–590.

    Article  CAS  PubMed  Google Scholar 

  67. Tanifuji, G. and Onodera, N.T., Cryptomonads: A model organism sheds light on the evolutionary history of genome reorganization in secondary endosymbiosis, Adv. Bot. Res., 2017, vol. 84, pp. 263–320.

    Article  CAS  Google Scholar 

  68. Vanclová, A.M., Hadariová, L., Hrdá, Š., and Hampl, V., Secondary plastids of euglenophytes, Adv. Bot. Res., 2017, vol. 84, pp. 321–358.

    Article  Google Scholar 

  69. Waller, R.F. and Kořený, L., Plastid complexity in dinoflagellates: A picture of gains, losses, replacements, and revisions, Adv. Bot. Res., 2017, vol. 84, pp. 105–143.

    Article  CAS  Google Scholar 

  70. Whittaker, R.H., New concepts of kingdoms of organisms, Science, 1969, vol. 163, pp. 150–160.

    Article  CAS  PubMed  Google Scholar 

  71. Woese, C.R. and Fox, G.E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci., 1977, vol. 74, no. 11, pp. 5088–5090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G., and Bhattacharya, D., A molecular timeline for the origin of photosynthetic eukaryotes, Mol. Biol. Evol., 2004, vol. 21, no. 5, pp. 809–818.

    Article  CAS  PubMed  Google Scholar 

  73. Yoon, H.S., Reyes-Prieto, A., Melkonian, M., and Bhattacharya, D., Minimal plastid genome evolution in the Paulinella endosymbiont, Curr. Biol., 2006, vol. 16, no. 17, pp. R670–R672.

    Article  CAS  PubMed  Google Scholar 

  74. Zimorski, V., Ku, C., Martin, W.F., and Gould, S.B., Endosymbiotic theory for organelle origins, Curr. Opin. Microbiol., 2014, vol. 22, pp. 38–48.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E. Voronina (Biological Faculty, Moscow State University) and the reviewers for critical attitude toward the manuscript and valuable comments. M.A. Gololobova is grateful to researchers of the Algology Laboratory (Komarov Botanical Institute) for inspiring her to write this work.

Funding

The work was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Moscow State University No. 121032300080-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gololobova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gololobova, M.A., Belyakova, G.A. Position of Algae on the Tree of Life. Dokl Biol Sci 507, 312–326 (2022). https://doi.org/10.1134/S0012496622060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060035

Keywords:

Navigation